scholarly journals Preferred resting surfaces of dominant malaria vectors inside different house types in rural south-eastern Tanzania

2019 ◽  
Author(s):  
Betwel John Msugupakulya ◽  
Emmanuel W. Kaindoa ◽  
Halfan S. Ngowo ◽  
Japhet M. Kihonda ◽  
Najat F. Kahamba ◽  
...  

Abstract Background Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis , inside four common house types in rural south-eastern Tanzania.Methodology The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6am-8am), evenings (6pm-8pm) and at night (11pm-12.00am) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets).Results Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus ; 60-66% of An. arabiensis ).Conclusion While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.

2019 ◽  
Author(s):  
Betwel John Msugupakulya ◽  
Emmanuel W. Kaindoa ◽  
Halfan S. Ngowo ◽  
Japhet M. Kihonda ◽  
Najat F. Kahamba ◽  
...  

Abstract Background Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis , inside four common house types in rural south-eastern Tanzania.Methodology The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6am-8am), evenings (6pm-8pm) and at night (11pm-12.00am) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets).Results Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus ; 60-66% of An. arabiensis ).Conclusion While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


2020 ◽  
Author(s):  
Polius Gerazi Pinda ◽  
Claudia Eichenberger ◽  
Halfan S Ngowo ◽  
Dickson S Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background: Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector species, Anopheles arabiensis. This study compared the intensities of resistance between the two malaria vectors, so as to improve options for control. Methods: The study used WHO assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from villages across two districts in south-eastern Tanzania and identified using morphological and molecular approaches.Findings: At baseline doses (1×), both species were resistant to the two pyrethroids (permethrin and deltamethrin) but susceptible to the organophosphate (pirimiphos-methyl). An. funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb) at baseline doses. Both species were generally resistant to DDT, except An.arabiensis from one village. An. funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses except in one village. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of pyrethroid in both An. arabiensis and An. funestus achieving mortalities >98%, except for An. funestus from two villages for which permethrin-associated mortalities exceeded 90% but not 98%. Conclusions: In these communities where An. funestus dominates malaria transmission, this study may suggest that the species also have much stronger resistance to pyrethroids than its counterpart, An. arabiensis and can survive more classes of insecticides, including carbamates. The pyrethroid resistance in both species appears to be mostly metabolic and may be temporarily addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new choices of interventions to tackle malaria transmission in such settings. These may include PBO-based LLINs or improved IRS with compounds to which the vectors are susceptible. Additional field validation of these indications will be necessary using age-synchronized mosquitoes.


Author(s):  
Polius Gerazi Pinda ◽  
Claudia Eichenberger ◽  
Halfan S Ngowo ◽  
Dickson S Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background: Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance in dominant malaria vectors. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus now transmit more than 80% of malaria infections even in villages where the species occurs at far lower densities than other vectors such as Anopheles arabiensis.Methods: To better understand the dominance of An. funestus in these settings and improve options for its control, this study compared intensities of resistance between females of this species and those of An. arabiensis , using WHO assays with 1×, 5× and 10× insecticide doses. Additional tests were done to assess the reversibility of such resistance using synergists. The mosquitoes were collected from villages across two districts in south-eastern Tanzania.Findings: Both species were resistant to the two pyrethroids (permethrin and deltamethrin) and the organochloride (DDT) but susceptible to the organophosphate (pirimiphos-methyl) at standard baseline doses (1×). However, An. funestus as opposed to An. arabiensis was also resistant to the carbamate (bendiocarb) at standard doses (1×). An. funestus showed strong resistance to pyrethroids, surviving the 5× doses and 10× doses except in one village. Pre-exposure to the synergist, piperonyl butoxide (PBO), reversed the pyrethroid-resistance in both An. arabiensis and An. funestus achieving mortalities >98%, except for An. funestus from two villages for which permethrin-associated mortalities exceeded 90% but not 98%.Conclusions : In these communities where An. funestus now dominates malaria transmission, the species also displays much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can readily survive more classes of insecticides, including carbamates. The resistance to pyrethroids in both mosquito species appears to be mostly metabolic and can be reversed significantly using synergists such as PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and will also inform future choices of interventions to tackle malaria transmission in this area and other similar settings. Such interventions may include PBO-based LLINs or improved IRS with compounds such as organophosphates against which the vectors are still susceptible.


2019 ◽  
Author(s):  
John Paliga Masalu ◽  
Marceline Finda ◽  
Gerry F. Killeen ◽  
Halfan S. Ngowo ◽  
Polius G. Pinda ◽  
...  

Abstract Background Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacies of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin and respectively fitted to chairs and outdoor kitchens, against mosquitoes.Methods Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of eight households using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24h-mortality. Finally, WHO insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages.Results Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-76% while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl & bendiocarb) but resistant to pyrethroids commonly used on LLINs (deltamethrin & permethrin).Conclusion Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chair and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248538
Author(s):  
Mercy A. Opiyo ◽  
Halfan S. Ngowo ◽  
Salum A. Mapua ◽  
Monica Mpingwa ◽  
Nuru Nchimbi ◽  
...  

Background Pyriproxyfen (PPF), an insect growth hormone mimic is widely used as a larvicide and in some second-generation bed nets, where it is combined with pyrethroids to improve impact. It has also been evaluated as a candidate for auto-dissemination by adult mosquitoes to control Aedes and Anopheles species. We examined whether PPF added to larval habitats of pyrethroid-resistant malaria vectors can modulate levels of resistance among emergent adult mosquitoes. Methodology Third-instar larvae of pyrethroid-resistant Anopheles arabiensis (both laboratory-reared and field-collected) were reared in different PPF concentrations, between 1×10−9 milligrams active ingredient per litre of water (mgAI/L) and 1×10−4 mgAI/L, or no PPF at all. Emergent adults escaping these sub-lethal exposures were tested using WHO-standard susceptibility assays on pyrethroids (0.75% permethrin and 0.05% deltamethrin), carbamates (0.1% bendiocarb) and organochlorides (4% DDT). Biochemical basis of pyrethroid resistance was investigated by pre-exposure to 4% PBO. Bio-efficacies of long-lasting insecticide-treated nets, Olyset® and PermaNet 2.0 were also examined against adult mosquitoes with or without previous aquatic exposure to PPF. Results Addition of sub-lethal doses of PPF to larval habitats of pyrethroid-resistant An. arabiensis, consistently resulted in significantly reduced mortalities of emergent adults when exposed to pyrethroids, but not to bendiocarb or DDT. Mortality rates after exposure to Olyset® nets, but not PermaNet 2.0 were also reduced following aquatic exposures to PPF. Pre-exposure to PBO followed by permethrin or deltamethrin resulted in significant increases in mortality, compared to either insecticide alone. Conclusions Partially-resistant mosquitoes exposed to sub-lethal aquatic concentrations of PPF may become more resistant to pyrethroids than they already are without such pre-exposures. Studies should be conducted to examine whether field applications of PPF, either by larviciding or other means actually exacerbates pyrethroid-resistance in areas where signs of such resistance already exist in wild the vector populations. The studies should also investigate mechanisms underlying such magnification of resistance, and how this may impact the potential of PPF-based interventions in areas with pyrethroid resistance.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Polius G. Pinda ◽  
Claudia Eichenberger ◽  
Halfan S. Ngowo ◽  
Dickson S. Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. Methods The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. Findings At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. Conclusions In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


2020 ◽  
Author(s):  
Polius Gerazi Pinda ◽  
Claudia Eichenberger ◽  
Halfan S Ngowo ◽  
Dickson S Msaky ◽  
Said Abbasi ◽  
...  

Abstract BackgroundLong-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used.MethodsThe study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes.FindingsAt baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (>98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%.ConclusionsIn south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Emmanuel P. Mwanga ◽  
Arnold S. Mmbando ◽  
Paul C. Mrosso ◽  
Caleb Stica ◽  
Salum A. Mapua ◽  
...  

Abstract Background Eave ribbons treated with spatial repellents effectively prevent human exposure to outdoor-biting and indoor-biting malaria mosquitoes, and could constitute a scalable and low-cost supplement to current interventions, such as insecticide-treated nets (ITNs). This study measured protection afforded by transfluthrin-treated eave ribbons to users (personal and communal protection) and non-users (only communal protection), and whether introducing mosquito traps as additional intervention influenced these benefits. Methods Five experimental huts were constructed inside a 110 m long, screened tunnel, in which 1000 Anopheles arabiensis were released nightly. Eave ribbons treated with 0.25 g/m2 transfluthrin were fitted to 0, 1, 2, 3, 4 or 5 huts, achieving 0, 20, 40, 60, 80 and 100% coverage, respectively. Volunteers sat near each hut and collected mosquitoes attempting to bite them from 6 to 10 p.m. (outdoor-biting), then went indoors to sleep under untreated bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6 a.m. (indoor-biting). Caged mosquitoes kept inside the huts were monitored for 24 h-mortality. Separately, eave ribbons, UV–LED mosquito traps (Mosclean) or both the ribbons and traps were fitted, each time leaving the central hut unfitted to represent non-user households and assess communal protection. Biting risk was measured concurrently in all huts, before and after introducing interventions. Results Transfluthrin-treated eave ribbons provided 83% and 62% protection indoors and outdoors respectively to users, plus 57% and 48% protection indoors and outdoors to the non-user. Protection for users remained constant, but protection for non-users increased with eave ribbons coverage, peaking once 80% of huts were fitted. Mortality of mosquitoes caged inside huts with eave ribbons was 100%. The UV–LED traps increased indoor exposure to users and non-users, but marginally reduced outdoor-biting. Combining the traps and eave ribbons did not improve user protection relative to eave ribbons alone. Conclusion Transfluthrin-treated eave ribbons protect both users and non-users against malaria mosquitoes indoors and outdoors. The mosquito-killing property of transfluthrin can magnify the communal benefits by limiting unwanted diversion to non-users, but should be validated in field trials against pyrethroid-resistant vectors. Benefits of the UV–LED traps as an intervention alone or alongside eave ribbons were however undetectable in this study. These findings extend the evidence that transfluthrin-treated eave ribbons could complement ITNs.


2020 ◽  
Author(s):  
John Paliga Masalu ◽  
Marceline Finda ◽  
Gerry F. Killeen ◽  
Halfan S. Ngowo ◽  
Polius G. Pinda ◽  
...  

Abstract Background: Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. These behaviors compromise effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacies of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin and respectively fitted to chairs and outdoor kitchens, against mosquitoes. Methods : Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of 28 households in dry and wet seasons, using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24h-mortality. Finally, WHO insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages. Results : Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-85%, while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 77-81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl & bendiocarb) but resistant to pyrethroids commonly used on LLINs (deltamethrin & permethrin). Conclusion: Most houses had actively-used peri-domestic outdoor spaces where exposures to mosquitoes occur. Both the transfluthrin-treated chairs and ribbons reduced outdoor-biting malaria vectors in the peri-domestic spaces, and elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two prototype formats, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne diseases in areas with significant peri-domestic activities. Keywords : Peri-domestic spaces, transfluthrin-treated chairs, eave ribbons, transfluthrin, spatial repellents, outdoor-biting, malaria vectors, Ifakara Health Institute.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Alphonse Traoré ◽  
Gérard Niyondiko ◽  
Antoine Sanou ◽  
Franck Langevin ◽  
N’Falé Sagnon ◽  
...  

Abstract Background Malaria vector control relies upon the use of insecticide-treated nets and indoor residual spraying. However, as the emergency of insecticide resistance in malaria vectors grows, the effectiveness of these measures could be limited. Alternative tools are needed. In this context, repellents can play an important role against exophagic and exophilic mosquitoes. This study evaluated the efficacy of MAÏA®, a novel repellent ointment, in laboratory and field conditions in Burkina Faso. Methods For laboratory and field assessment, 20 volunteers were enrolled and trained for nocturnal collection of mosquitoes using human landing catches (HLC). In the laboratory tests, 2 mg/sq cm of treatment (either MAIA® or 20 % DEET) were used to assess median complete protection time (CPT) against two species: Anopheles gambiae and Aedes aegypti, following WHO guidelines. For both species, two strains consisting of susceptible and local strains were used. The susceptible strains were Kisumu and Bora Bora for An. gambiae and Ae. aegypti, respectively. For the field test, the median CPT of MAÏA® was compared to that of a negative (70 % ethanol) and positive (20 % DEET) after carrying out HLCs in rural Burkina Faso in both indoor and outdoor settings. Results Laboratory tests showed median Kaplan-Meier CPT of 6 h 30 min for An. gambiae (Kisumu), 5 h 30 min for An. gambiae (Goden, local strain), and 4 h for Ae. aegypti for both the local and sensitive strain. These laboratory results suggest that MAÏA® is a good repellent against the three mosquito species. During these field tests, a total of 3979 mosquitoes were caught. In this population, anophelines represented 98.5 %, with culicines (Aedes) making up the remaining 1.5 %. Among anopheline mosquitoes, 95 % belonged to the An. gambiae complex, followed by Anopheles funestus and Anopheles pharoensis. The median CPT of 20 % DEET and MAÏA® were similar (8 h) and much longer than that of the negative control (2 h). Conclusions Results from the present studies showed that MAÏA® offers high protection against anophelines biting indoors and outdoors and could play an important role in malaria prevention in Africa.


Sign in / Sign up

Export Citation Format

Share Document