scholarly journals Single cell RNA-seq analysis identifies a noncoding RNA mediating resistance to sorafenib treatment in HCC

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Kevin Zhou ◽  
Romario Nguyen ◽  
Liang Qiao ◽  
Jacob George
2021 ◽  
Author(s):  
Marina Aznaourova ◽  
Nils Schmerer ◽  
Harshavardhan Janga ◽  
Zhenhua Zhang ◽  
Kim Pauck ◽  
...  

The systemic immune response to viral infection is shaped by master transcription factors such as NFκB or PU.1. Although long non-coding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA-seq approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9 - key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling characterized PIRAT as a nuclear decoy RNA, diverting the PU.1 transcription factor from alarmin promoters to dead-end pseudogenes in naive monocytes. NFκB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Our results suggest a major role of nuclear noncoding RNA circuits in systemic antiviral responses to SARS-CoV-2 in humans.


2021 ◽  
Vol 118 (51) ◽  
pp. e2113568118
Author(s):  
Alina Isakova ◽  
Norma Neff ◽  
Stephen R. Quake

The ability to interrogate total RNA content of single cells would enable better mapping of the transcriptional logic behind emerging cell types and states. However, current single-cell RNA-sequencing (RNA-seq) methods are unable to simultaneously monitor all forms of RNA transcripts at the single-cell level, and thus deliver only a partial snapshot of the cellular RNAome. Here we describe Smart-seq-total, a method capable of assaying a broad spectrum of coding and noncoding RNA from a single cell. Smart-seq-total does not require splitting the RNA content of a cell and allows the incorporation of unique molecular identifiers into short and long RNA molecules for absolute quantification. It outperforms current poly(A)-independent total RNA-seq protocols by capturing transcripts of a broad size range, thus enabling simultaneous analysis of protein-coding, long-noncoding, microRNA, and other noncoding RNA transcripts from single cells. We used Smart-seq-total to analyze the total RNAome of human primary fibroblasts, HEK293T, and MCF7 cells, as well as that of induced murine embryonic stem cells differentiated into embryoid bodies. By analyzing the coexpression patterns of both noncoding RNA and mRNA from the same cell, we were able to discover new roles of noncoding RNA throughout essential processes, such as cell cycle and lineage commitment during embryonic development. Moreover, we show that independent classes of short-noncoding RNA can be used to determine cell-type identity.


Sign in / Sign up

Export Citation Format

Share Document