feedback regulator
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 32)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ian M. Gans ◽  
James A. Coffman

Glucocorticoids, vertebrate steroid hormones produced by cells of the adrenal cortex or interrenal tissue, function dynamically to maintain homeostasis under constantly changing and occasionally stressful environmental conditions. They do so by binding and thereby activating nuclear receptor transcription factors, the Glucocorticoid and Mineralocorticoid Receptors (MR and GR, respectively). The GR, by virtue of its lower affinity for endogenous glucocorticoids (cortisol or corticosterone), is primarily responsible for transducing the dynamic signals conveyed by circadian and ultradian glucocorticoid oscillations as well as transient pulses produced in response to acute stress. These dynamics are important determinants of stress responsivity, and at the systemic level are produced by feedforward and feedback signaling along the hypothalamus-pituitary–adrenal/interrenal axis. Within receiving cells, GR signaling dynamics are controlled by the GR target gene and negative feedback regulator fkpb5. Chronic stress can alter signaling dynamics via imperfect physiological adaptation that changes systemic and/or cellular set points, resulting in chronically elevated cortisol levels and increased allostatic load, which undermines health and promotes development of disease. When this occurs during early development it can “program” the responsivity of the stress system, with persistent effects on allostatic load and disease susceptibility. An important question concerns the glucocorticoid-responsive gene regulatory network that contributes to such programming. Recent studies show that klf9, a ubiquitously expressed GR target gene that encodes a Krüppel-like transcription factor important for metabolic plasticity and neuronal differentiation, is a feedforward regulator of GR signaling impacting cellular glucocorticoid responsivity, suggesting that it may be a critical node in that regulatory network.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Minami Ando ◽  
Shigeyuki Magi ◽  
Masahide Seki ◽  
Yutaka Suzuki ◽  
Takeya Kasukawa ◽  
...  

AbstractInflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα’s role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bowen Zhu ◽  
Megan Finch-Edmondson ◽  
Kim Whye Leong ◽  
Xiaoqian Zhang ◽  
Mitheera V. ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) regulate numerous biological processes involved in both development and carcinogenesis. Hippo-YAP/TAZ signaling, a critical pathway responsible for organ size control, is often dysregulated in a variety of cancers. However, the nature and function of YAP/TAZ-regulated lncRNAs during tumorigenesis remain largely unexplored. By profiling YAP/TAZ-regulated lncRNAs, we identified SFTA1P as a novel transcriptional target and a positive feedback regulator of YAP/TAZ signaling. Using non-small cell lung cancer (NSCLC) cell lines, we show that SFTA1P is transcriptionally activated by YAP/TAZ in a TEAD-dependent manner. Functionally, knockdown of SFTA1P in NSCLC cell lines inhibited proliferation, induced programmed cell death, and compromised their tumorigenic potential. Mechanistically, SFTA1P knockdown decreased TAZ protein abundance and consequently, the expression of YAP/TAZ transcriptional targets. We provide evidence that this phenomenon could potentially be mediated via its interaction with TAZ mRNA to regulate TAZ translation. Our results reveal SFTA1P as a positive feedback regulator of Hippo-YAP/TAZ signaling, which may serve as the molecular basis for lncRNA-based therapies against YAP/TAZ-driven cancers.


2021 ◽  
Author(s):  
Marina Aznaourova ◽  
Nils Schmerer ◽  
Harshavardhan Janga ◽  
Zhenhua Zhang ◽  
Kim Pauck ◽  
...  

The systemic immune response to viral infection is shaped by master transcription factors such as NFκB or PU.1. Although long non-coding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA-seq approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9 - key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling characterized PIRAT as a nuclear decoy RNA, diverting the PU.1 transcription factor from alarmin promoters to dead-end pseudogenes in naive monocytes. NFκB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Our results suggest a major role of nuclear noncoding RNA circuits in systemic antiviral responses to SARS-CoV-2 in humans.


Author(s):  
Ian M. Gans ◽  
Janelle Grendler ◽  
Remy Babich ◽  
Nishad Jayasundara ◽  
James A. Coffman

Krüppel-like factor 9 (Klf9) is a feedforward regulator of glucocorticoid receptor (GR) signaling. Here we show that in zebrafish klf9 is expressed with GR-dependent oscillatory dynamics in synchrony with fkbp5, a GR target that encodes a negative feedback regulator of GR signaling. We found that fkbp5 transcript levels are elevated in klf9–/– mutants and that Klf9 associates with chromatin at the fkbp5 promoter, which becomes hyperacetylated in klf9–/– mutants, suggesting that the GR regulates fkbp5 via an incoherent feedforward loop with klf9. As both the GR and Fkbp5 are known to regulate metabolism, we asked how loss of Klf9 affects metabolic rate and gene expression. We found that klf9–/– mutants have a decreased oxygen consumption rate (OCR) and upregulate glycolytic genes, the promoter regions of which are enriched for potential Klf9 binding motifs. Our results suggest that Klf9 functions downstream of the GR to regulate cellular glucocorticoid responsivity and metabolic homeostasis.


2021 ◽  
Vol 35 (11) ◽  
Author(s):  
Xiaohan Luan ◽  
Wenxian Yang ◽  
Xiaoyuan Bai ◽  
Heqiao Li ◽  
Huizi Li ◽  
...  

2021 ◽  
Vol Volume 14 ◽  
pp. 4723-4741
Author(s):  
Petra Henning ◽  
Sofia Movérare-Skrtic ◽  
Anna Westerlund ◽  
Pedro Paulo Chaves de Souza ◽  
Thais Floriano-Marcelino ◽  
...  

2021 ◽  
Author(s):  
Tianyu Han ◽  
Peiwen Song ◽  
Zuomeng Wu ◽  
Xiang Xia ◽  
Ying Wang ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are a promising therapy for spinal cord injury (SCI) as they can provide a favorable environment for the regrowth of neurons and axons by inhibiting receptor-regulated Smads (R-Smads) in endogenous neural stem cells (NSCs). However, their mechanism of action and effect on the expression of inhibitory Smads (I-Smads) remains unclear. Here, we demonstrated that Extracellular vesicles (EVs) from MSCs were able to upregulate the Smad 6 expression by carrying TGF-β. Smad 6 knockdown in NSCs partly weakened the BMSC-EVs-induced effect on neural differentiation. In spinal cord injured rats, we found that in the acute phase of injury, the Smad 6 expression was not reduced by the treatment of TGF-β type I receptor kinase inhibitor SB431542, indicating that the Smad 6 expression was not only mediated TGF-β, the inflammatory factors and BMPs were also involved. However, in the later phase of SCI, the Smad 6 expression was reduced by the addition of SB 431542, suggesting in this phase, TGF-β played a key role on the mediation of Smad 6 expression. In addition, by immunohistochemistry staining, Hematoxylin-eosin staining and BBB scores, we revealed that the early inhibition of TGF-β did not increase the regrowth of neurons. Instead, it increased the volume of cavity and the Caspase-3 expression at 24h post-injury, leading to a wore functional outcome. In contrast the later treatment of the TGF-β inhibitor promoted the regrowth of neurons around the cavity, resulting into a better neurological outcome. Together all these results indicated that Smad 6 acts as a feedback regulator to prevents over-differentiation of NSCs to astrocytes and BMSC-EVs can upregulate Smad 6 expression by the carring TGF-β.


2021 ◽  
Author(s):  
Takuya Akiyama ◽  
Chris W. Seidel ◽  
Matthew C. Gibson

AbstractThe Drosophila BMP 2/4 homologue Decapentaplegic (Dpp) acts as a morphogen to regulate diverse developmental processes, including wing morphogenesis. Transcriptional feedback regulation of this pathway ensures tightly controlled signaling outputs to generate the precise pattern of the adult wing. Nevertheless, few direct Dpp target genes have been explored and our understanding of feedback regulation remains incomplete. Here, we employ transcriptional profiling following dpp conditional knockout to identify nord, a novel Dpp/BMP feedback regulator. Nord mutants generated by CRISPR/Cas9 mutagenesis produce a smaller wing and display low penetrance venation defects. At the molecular level, nord encodes a heparin-binding protein and we show that its overexpression is sufficient to antagonize Dpp/BMP signaling. Further, we demonstrate that Nord physically and genetically interacts with the Dpp/BMP co-receptor Dally. In sum we propose that Nord acts with Dally to fine tune Dpp/BMP signaling, with implications for both developmental and disease models.Impact statementFunctional analyses of the Drosophila homologue of Neuron Derived Neurotrophic Factor reveal a new mode of extracellular heparan sulfate proteoglycan regulation required for proper morphogen action.


Sign in / Sign up

Export Citation Format

Share Document