scholarly journals The inhibitory effect of AMP-activated protein kinase (AMPK) on chemokine and prostaglandin production in human endometrial stromal cells

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yasushi Kawano ◽  
Hatsumi Sato ◽  
Kaori Goto ◽  
Masakazu Nishida ◽  
Kaei Nasu

Abstract Background To investigate the role of adenosine monophosphate (AMP)-activated protein kinase (AMPK) on the production of interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, prostaglandin E2 and F2α induced by IL-1β in endometrial stromal cells (ESCs) following treatment with 5-aminoimidazole-4- carboxamide ribonucleoside (AICAR). Methods Endometrial specimens were obtained and cultured. We examined the effects of IL-1β, IL-1 ra and AICAR on the production of IL-8, MCP-1, PGE2 and PGF2α in human ESCs. The phosphorylations of AMPK, IκB, 4EBP-1, p70S6K and S6 ribosomal protein were analyzed by Western immunoblotting. Results Following stimulation by IL-1β, the production of IL-8, MCP-1, PGE2 and PGF2α showed significant increases, and these increases were suppressed by AICAR. The expression of cyclooxygenase-2 (COX-2) induced by IL-1β and suppressed by AICAR. The phosphorylation of IκB, 4EBP-1, p70S6K and S6 ribosomal protein were inhibited via an AMPK-dependent signal transduction. Conclusions The production of IL-8, MCP-1, PGE2 and PGF2α induced by IL-1β in ESCs were involved in the negative regulatory mechanisms of AMPK. The substances that activate AMPK may be promising agents for the treatment of pathological problems such as dysmenorrhea.

2021 ◽  
Vol 43 (3) ◽  
pp. 2111-2123
Author(s):  
Yoji Hisamatsu ◽  
Hiromi Murata ◽  
Hiroaki Tsubokura ◽  
Yoshiko Hashimoto ◽  
Masaaki Kitada ◽  
...  

Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization.


Zygote ◽  
2010 ◽  
Vol 19 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Sylvie Bilodeau-Goeseels ◽  
Paul L. Panich ◽  
John P. Kastelic

SummaryThe adenosine monophosphate-activated protein kinase (AMPK) activators, 5′-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin (MET), inhibit resumption of meiosis in bovine cumulus-enclosed oocytes (CEO) and denuded oocytes (DO). The objectives of this study were to: (1) examine the effects of AMPK inhibitors on bovine oocyte meiosis in vitro; and (2) determine if AICAR or MET activates oocyte and/or cumulus cell AMPK. The AMPK inhibitor compound C (CC; 0.5, 1, 5, and 10 μM) did not reverse the inhibitory effects of AICAR (1 mM) and MET (2 mM) on bovine oocyte meiosis. Additionally, CC (5 and 10 μM) inhibited meiosis (p < 0.05) in CEO and DO cultured for 7 h. Okadaic acid (1 μM) reversed the inhibitory effect of MET (2 mM) and CC (5 μM; p < 0.05) but not of AICAR (1 mM). Phosphorylation of the alpha subunit of AMPK on Thr172 is required for activation. Based on western blot analysis, AICAR, MET and CC did not affect Thr172 phosphorylation levels in DO and oocytes from complexes (p > 0.05). In cumulus cells, Thr172 phosphorylation decreased after 3 h of culture (p < 0.05), regardless of the presence of AMPK modulators in the culture medium. Higher concentrations of AICAR (2 mM) and MET (10 mM) did not affect Thr172 phosphorylation, but phosphorylation on Ser79 of ACC, a substrate of AMPK, was increased in response to MET (p < 0.05). In conclusion, we inferred that the inhibitory effect of AICAR and MET on bovine oocyte meiosis was probably not mediated through activation of AMPK. Moreover, these compounds probably inhibited meiosis through different pathways.


Author(s):  
Dariusz Szukiewicz ◽  
Aleksandra Stangret ◽  
Carmen Ruiz-Ruiz ◽  
Enrique G. Olivares ◽  
Olga Soriţău ◽  
...  

AbstractEndometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis.


2021 ◽  
Vol 22 (14) ◽  
pp. 7256
Author(s):  
Vianet Argelia Tello-Flores ◽  
Fredy Omar Beltrán-Anaya ◽  
Marco Antonio Ramírez-Vargas ◽  
Brenda Ely Esteban-Casales ◽  
Napoleón Navarro-Tito ◽  
...  

Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.


2014 ◽  
Vol 46 (5) ◽  
pp. 394-400 ◽  
Author(s):  
J. Xiao ◽  
G. Niu ◽  
S. Yin ◽  
S. Xie ◽  
Y. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document