scholarly journals Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement

Author(s):  
Jennifer Erley ◽  
Davide Genovese ◽  
Natalie Tapaskar ◽  
Nazia Alvi ◽  
Nina Rashedi ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Sorin Giusca ◽  
Henning Steen ◽  
Moritz Montenbruck ◽  
Amit R. Patel ◽  
Burkert Pieske ◽  
...  

Abstract Aim To evaluate the ability of single heartbeat fast-strain encoded (SENC) cardiovascular magnetic resonance (CMR) derived myocardial strain to discriminate between different forms of left ventricular (LV) hypertrophy (LVH). Methods 314 patients (228 with hypertensive heart disease (HHD), 45 with hypertrophic cardiomyopathy (HCM), 41 with amyloidosis, 22 competitive athletes, and 33 healthy controls) were systematically analysed. LV ejection fraction (LVEF), LV mass index and interventricular septal (IVS) thickness, T1 mapping and atypical late gadolinium enhancement (LGE) were assessed. In addition, the percentage of LV myocardial segments with strain ≤ − 17% (%normal myocardium) was determined. Results Patients with amyloidosis and HCM exhibited the highest IVS thickness (17.4 ± 3.3 mm and 17.4 ± 6 mm, respectively, p < 0.05 vs. all other groups), whereas patients with amyloidosis showed the highest LV mass index (95.1 ± 20.1 g/m2, p < 0.05 vs all others) and lower LVEF compared to controls (50.5 ± 9.8% vs 59.2 ± 5.5%, p < 0.05). Analysing subjects with mild to moderate hypertrophy (IVS 11–15 mm), %normal myocardium exhibited excellent and high precision, respectively for the differentiation between athletes vs. HCM (sensitivity and specificity = 100%, Area under the curve; AUC%normalmyocardium = 1.0, 95%CI = 0.85–1.0) and athletes vs. HHD (sensitivity = 83%, specificity = 75%, AUC%normalmyocardium = 0.85, 95%CI = 0.78–0.90). Combining %normal myocardial strain with atypical LGE provided high accuracy also for the differentiation of HHD vs. HCM (sensitivity = 82%, specificity = 100%, AUCcombination = 0.92, 95%CI = 0.88–0.95) and HCM vs. amyloidosis (sensitivity = 83%, specificity = 100%, AUCcombination = 0.83, 95%CI = 0.60–0.96). Conclusion Fast-SENC derived myocardial strain is a valuable tool for differentiating between athletes vs. HCM and athletes vs. HHD. Combining strain and LGE data is useful for differentiating between HHD vs. HCM and HCM vs. cardiac amyloidosis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Angel T. Chan ◽  
William Dinsfriend ◽  
Jiwon Kim ◽  
Brian Yum ◽  
Razia Sultana ◽  
...  

Abstract Background Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. Methods Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. Results 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)—paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17–2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23–3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53–2.33], p = 0.79). Conclusions Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement—a marker of tumor avascularity on LGE-CMR—is a novel marker of increased mortality risk.


Sign in / Sign up

Export Citation Format

Share Document