scholarly journals Assessment of the regional distribution of normalized circumferential strain in the thoracic and abdominal aorta using DENSE cardiovascular magnetic resonance

Author(s):  
John S. Wilson ◽  
W. Robert Taylor ◽  
John Oshinski

Abstract Background Displacement Encoding with Stimulated Echoes (DENSE) cardiovascular magnetic resonance (CMR) of the aortic wall offers the potential to improve patient-specific diagnostics and prognostics of diverse aortopathies by quantifying regionally heterogeneous aortic wall strain in vivo. However, before regional mapping of strain can be used to clinically assess aortic pathology, an evaluation of the natural variation of normal regional aortic kinematics is required. Method Aortic spiral cine DENSE CMR was performed at 3 T in 30 healthy adult subjects (range 18 to 65 years) at one or more axial locations that are at high risk for aortic aneurysm or dissection: the infrarenal abdominal aorta (IAA, n = 11), mid-descending thoracic aorta (DTA, n = 17), and/or distal aortic arch (DAA, n = 11). After implementing custom noise-reduction techniques, regional circumferential Green strain of the aortic wall was calculated across 16 sectors around the aortic circumference at each location and normalized by the mean circumferential strain for comparison between individuals. Results The distribution of normalized circumferential strain (NCS) was heterogeneous for all locations evaluated. Despite large differences in mean strain between subjects, comparisons of NCS revealed consistent patterns of strain distribution for similar groupings of patients by axial location, age, and/or mean displacement angle. NCS at local systole was greatest in the lateral/posterolateral walls in the IAAs (1.47 ± 0.27), medial wall in anteriorly displacing DTAs (1.28 ± 0.20), lateral wall in posteriorly displacing DTAs (1.29 ± 0.29), superior curvature in DAAs < 50 years-old (1.93 ± 0.22), and medial wall in DAAs > 50 years (2.29 ± 0.58). The distribution of strain was strongly influenced by the location of the vertebra and other surrounding structures unique to each location. Conclusions Regional in vivo circumferential strain in the adult aorta is unique to each axial location and heterogeneous around its circumference, but can be grouped into consistent patterns defined by basic patient-specific metrics following normalization. The heterogeneous strain distributions unique to each group may be due to local peri-aortic constraints (particularly at the aorto-vertebral interface), heterogeneous material properties, and/or heterogeneous flow patterns. These results must be carefully considered in future studies seeking to clinically interpret or computationally model patient-specific aortic kinematics.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
John S. Wilson ◽  
Xiaodong Zhong ◽  
Jackson Hair ◽  
W. Robert Taylor ◽  
John N. Oshinski

Regional tissue mechanics play a fundamental role in the patient-specific function and remodeling of the cardiovascular system. Nevertheless, regional in vivo assessments of aortic kinematics remain lacking due to the challenge of imaging the thin aortic wall. Herein, we present a novel application of displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify the regional displacement and circumferential Green strain of the thoracic and abdominal aorta. Two-dimensional (2D) spiral cine DENSE and steady-state free procession (SSFP) cine images were acquired at 3T at either the infrarenal abdominal aorta (IAA), descending thoracic aorta (DTA), or distal aortic arch (DAA) in a pilot study of six healthy volunteers (22–59 y.o., 4 females). DENSE data were processed with multiple custom noise reduction techniques including time-smoothing, displacement vector smoothing, sectorized spatial smoothing, and reference point averaging to calculate circumferential Green strain across 16 equispaced sectors around the aorta. Each volunteer was scanned twice to evaluate interstudy repeatability. Circumferential Green strain was heterogeneously distributed in all volunteers and locations. The mean spatial heterogeneity index (standard deviation of all sector values divided by the mean strain) was 0.37 in the IAA, 0.28 in the DTA, and 0.59 in the DAA. Mean (homogenized) peak strain by DENSE for each cross section was consistent with the homogenized linearized strain estimated from SSFP cine. The mean difference in peak strain across all sectors following repeat imaging was −0.1±2.3%, with a mean absolute difference of 1.7%. Aortic cine DENSE MRI is a viable noninvasive technique for quantifying heterogeneous regional aortic wall strain and has significant potential to improve patient-specific clinical assessments of numerous aortopathies, as well as to provide the lacking spatiotemporal data required to refine patient-specific computational models of aortic growth and remodeling.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Johane H. Bracamonte ◽  
John S. Wilson ◽  
Joao S. Soares

Abstract The establishment of in vivo, noninvasive patient-specific, and regionally resolved techniques to quantify aortic properties is key to improving clinical risk assessment and scientific understanding of vascular growth and remodeling. A promising and novel technique to reach this goal is an inverse finite element method (FEM) approach that utilizes magnetic resonance imaging (MRI)-derived displacement fields from displacement encoding with stimulated echoes (DENSE). Previous studies using DENSE MRI suggested that the infrarenal abdominal aorta (IAA) deforms heterogeneously during the cardiac cycle. We hypothesize that this heterogeneity is driven in healthy aortas by regional adventitial tethering and interaction with perivascular tissues, which can be modeled with elastic foundation boundary conditions (EFBCs) using a collection of radially oriented springs with varying stiffness with circumferential distribution. Nine healthy IAAs were modeled using previously acquired patient-specific imaging and displacement fields from steady-state free procession (SSFP) and DENSE MRI, followed by assessment of aortic wall properties and heterogeneous EFBC parameters using inverse FEM. In contrast to traction-free boundary condition, prescription of EFBC reduced the nodal displacement error by 60% and reproduced the DENSE-derived heterogeneous strain distribution. Estimated aortic wall properties were in reasonable agreement with previously reported experimental biaxial testing data. The distribution of normalized EFBC stiffness was consistent among all patients and spatially correlated to standard peri-aortic anatomical features, suggesting that EFBC could be generalized for human adults with normal anatomy. This approach is computationally inexpensive, making it ideal for clinical research and future incorporation into cardiovascular fluid–structure analyses.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Johan Kihlberg ◽  
Vikas Gupta ◽  
Henrik Haraldsson ◽  
Andreas Sigfridsson ◽  
Sebastian I. Sarvari ◽  
...  

Abstract Background Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. Method 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. Results DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = − 0.10, FT r = − 0.07 and tagging r = − 0.16. Torsion from DENSE and tagging had a weak correlation (− 0.20 and − 0.22 respectively) with global LGE. Conclusion Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.


2018 ◽  
Vol 81 (4) ◽  
pp. 2759-2773 ◽  
Author(s):  
Jan N. Rose ◽  
Sonia Nielles‐Vallespin ◽  
Pedro F. Ferreira ◽  
David N. Firmin ◽  
Andrew D. Scott ◽  
...  

Author(s):  
Peter Opriessnig ◽  
Harald Mangge ◽  
Rudolf Stollberger ◽  
Hannes Deutschmann ◽  
Gernot Reishofer

2018 ◽  
Author(s):  
Minliang Liu ◽  
Liang Liang ◽  
Haofei Liu ◽  
Ming Zhang ◽  
Caitlin Martin ◽  
...  

AbstractIt is well known that residual deformations/stresses alter the mechanical behavior of arteries, e.g. the pressure-diameter curves. In an effort to enable personalized analysis of the aortic wall stress, approaches have been developed to incorporate experimentally-derived residual deformations into in vivo loaded geometries in finite element simulations using thick-walled models. Solid elements are typically used to account for “bending-like” residual deformations. Yet, the difficulty in obtaining patient-specific residual deformations and material properties has become one of the biggest challenges of these thick-walled models. In thin-walled models, fortunately, static determinacy offers an appealing prospect that allows for the calculation of the thin-walled membrane stress without patient-specific material properties. The membrane stress can be computed using forward analysis by enforcing an extremely stiff material property as penalty treatment, which is referred to as the forward penalty approach. However, thin-walled membrane elements, which have zero bending stiffness, are incompatible with the residual deformations, and therefore, it is often stated as a limitation of thin-walled models. In this paper, by comparing the predicted stresses from thin-walled models and thick-walled models, we demonstrate that the transmural mean hoop stress is the same for the two models and can be readily obtained from in vivo clinical images without knowing the patient-specific material properties and residual deformations. Computation of patient-specific mean hoop stress can be greatly simplified by using membrane model and the forward penalty approach, which may be clinically valuable.


2017 ◽  
Vol 80 (2) ◽  
pp. 648-654 ◽  
Author(s):  
Margarita Gorodezky ◽  
Andrew D. Scott ◽  
Pedro F. Ferreira ◽  
Sonia Nielles-Vallespin ◽  
Dudley J. Pennell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document