scholarly journals Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle

Author(s):  
C. Brooks Mobley ◽  
Troy A. Hornberger ◽  
Carlton D. Fox ◽  
James C. Healy ◽  
Brian S. Ferguson ◽  
...  
2018 ◽  
Vol 24 ◽  
pp. 127-133 ◽  
Author(s):  
Francina J. Dijk ◽  
Miriam van Dijk ◽  
Stéphane Walrand ◽  
Luc J.C. van Loon ◽  
Klaske van Norren ◽  
...  

2020 ◽  
Vol 111 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Sara Y Oikawa ◽  
Michael J Kamal ◽  
Erin K Webb ◽  
Chris McGlory ◽  
Steven K Baker ◽  
...  

ABSTRACT Background Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). Objectives The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE–induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). Methods In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. Results Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). Conclusions Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP. This trial was registered at clinicaltrials.gov as NCT03281434.


1981 ◽  
Vol 241 (4) ◽  
pp. E321-E327 ◽  
Author(s):  
M. N. Goodman ◽  
M. A. McElaney ◽  
N. B. Ruderman

Previous studies have established that 16-wk-old nonobese and obese rats conserve body protein during prolonged starvation. To determine the basis for this, protein synthesis and degradation in skeletal muscle were evaluated in the isolated perfused hindquarters of these rats, in the fed state and when starved for 2, 5, 10, and 11 days. Rats aged 4 and 8 wk were used as a comparison. The results indicate that the response to starvation depends on several factors: the age of the rat, its degree of adiposity, and the duration of the fast. An early event in starvation was a decline in muscle protein synthesis. This occurred in all groups, albeit this reduction occurred more slowly in the older rats. A later response to starvation was an increase in muscle proteolysis. This occurred between 2 and 5 days in the 8-wk-old rats. In 16-wk-old rats it did not occur until between 5 and 10 days, and it was preceded by a period of decreased proteolysis. In 16-wk-old obese rats, a decrease in proteolysis persisted for upwards of 10 days and the secondary increase was not noted during the period of study. The data suggest that the ability of older and more obese rats to conserve body protein during starvation is due, in part, to a curtailment of muscle proteolysis. This adaptation seems to correlate with the availability of lipid fuels.


2016 ◽  
Vol 4 (15) ◽  
pp. e12893 ◽  
Author(s):  
Lindsay S. Macnaughton ◽  
Sophie L. Wardle ◽  
Oliver C. Witard ◽  
Chris McGlory ◽  
D. Lee Hamilton ◽  
...  

1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


Sign in / Sign up

Export Citation Format

Share Document