MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis

2017 ◽  
Vol 18 (6) ◽  
pp. 579-588 ◽  
Author(s):  
Jing Zhang ◽  
Yu Liu
2009 ◽  
Vol 296 (2) ◽  
pp. R326-R333 ◽  
Author(s):  
Adam J. Rose ◽  
Bruno Bisiani ◽  
Bodil Vistisen ◽  
Bente Kiens ◽  
Erik A. Richter

Protein synthesis in skeletal muscle is known to decrease during exercise, and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) phosphorylation, key components in the mRNA translation machinery, were examined together with AMP-activated protein kinase (AMPK) in healthy young men. Skeletal muscle eEF2 phosphorylation at Thr56 increased during exercise but was not influenced by exercise intensity, and was lower than rest 30 min after exercise. On the other hand, 4EBP1 phosphorylation at Thr37/46 decreased during exercise, and this decrease was greater at higher exercise intensities and was similar to rest 30 min after exercise. AMPK activity, as indexed by AMPK α-subunit phosphorylation at Thr172 and phosphorylation of the AMPK substrate ACCβ at Ser221, was higher with higher exercise intensities, and these indices were higher than rest after high-intensity exercise only. Using immunohistochemistry, it was shown that the increase in skeletal muscle eEF2 Thr56 phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e., 4EBP1) and elongation (i.e., eEF2) steps, with eEF2 phosphorylation contributing at all exercise intensities but 4EBP1 dephosphorylation contributing to a greater extent at high vs. low exercise intensities.


2018 ◽  
Vol 124 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Ryo Takagi ◽  
Riki Ogasawara ◽  
Junya Takegaki ◽  
Arata Tsutaki ◽  
Koichi Nakazato ◽  
...  

We investigated the influence of past injurious exercise on anabolic response of skeletal muscle fibers to resistance exercise (RE). Wistar rats were divided into exercise (E) and exercise-after-injury (I-E) groups. At age 10 wk, the right gastrocnemius muscle in each rat in the I-E group was subjected to strenuous eccentric contractions. Subsequently, RE was imposed on the same muscle of each rat at 14 wk of age in both groups. Peak joint torque and total force generation per body mass during RE were similar between the groups. Muscle protein synthesis (MPS) in the I-E group was higher than that in the E group 6 h after RE. Furthermore, levels of phospho-p70S6 kinase (Thr389) and phospho-ribosomal protein S6 (phospho-rpS6) (Ser240/244), a downstream target of p70S6 kinase, were higher in the I-E group than in the E group. For the anabolic response in each fiber type, the I-E group showed a higher MPS response in type IIb, IIa, and I fibers and a higher phospho-rpS6 response in type IIx, IIa, and I fibers than the E group. In the I-E group, the relative content of myosin heavy chain (MHC) IIa was higher and that of MHC IIb was lower than those in the E group. In addition, type IIa fibers showed a lower MPS response to RE than type IIb fibers in the I-E group. In conclusion, the past injurious exercise enhanced the MPS and phospho-rpS6 responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively. NEW & NOTEWORTHY Past injurious exercise increased the muscle protein synthesis (MPS) response and mammalian target of rapamycin complex 1 (mTORC1) signaling activation to resistance exercise. In the responses of each fiber type, the past injurious exercise increased the MPS and phosphorylation ribosomal protein (Ser240/244) responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively.


1988 ◽  
Vol 254 (2) ◽  
pp. E208-E213 ◽  
Author(s):  
K. S. Nair ◽  
D. Halliday ◽  
R. C. Griggs

Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [13C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1-13C]leucine. FMPS in our subjects was 0.046 +/- 0.003%/h. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation (r2 = 0.73, P less than 0.05) was found between MPS (44.7 +/- 3.4 mg.kg-1.h-1) and WBPS (167.8 +/- 8.5 mg.kg-1.h-1). The contribution of MPS to WBPS was 27 +/- 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 +/- 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, we examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. We conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS.


1981 ◽  
Vol 241 (4) ◽  
pp. E321-E327 ◽  
Author(s):  
M. N. Goodman ◽  
M. A. McElaney ◽  
N. B. Ruderman

Previous studies have established that 16-wk-old nonobese and obese rats conserve body protein during prolonged starvation. To determine the basis for this, protein synthesis and degradation in skeletal muscle were evaluated in the isolated perfused hindquarters of these rats, in the fed state and when starved for 2, 5, 10, and 11 days. Rats aged 4 and 8 wk were used as a comparison. The results indicate that the response to starvation depends on several factors: the age of the rat, its degree of adiposity, and the duration of the fast. An early event in starvation was a decline in muscle protein synthesis. This occurred in all groups, albeit this reduction occurred more slowly in the older rats. A later response to starvation was an increase in muscle proteolysis. This occurred between 2 and 5 days in the 8-wk-old rats. In 16-wk-old rats it did not occur until between 5 and 10 days, and it was preceded by a period of decreased proteolysis. In 16-wk-old obese rats, a decrease in proteolysis persisted for upwards of 10 days and the secondary increase was not noted during the period of study. The data suggest that the ability of older and more obese rats to conserve body protein during starvation is due, in part, to a curtailment of muscle proteolysis. This adaptation seems to correlate with the availability of lipid fuels.


1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


2006 ◽  
Vol 291 (3) ◽  
pp. E666-E674 ◽  
Author(s):  
Charles H. Lang

Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by ∼25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E·eIF4G complex to the inactive eIF4E·4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document