scholarly journals The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein

2016 ◽  
Vol 4 (15) ◽  
pp. e12893 ◽  
Author(s):  
Lindsay S. Macnaughton ◽  
Sophie L. Wardle ◽  
Oliver C. Witard ◽  
Chris McGlory ◽  
D. Lee Hamilton ◽  
...  
2004 ◽  
Vol 14 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Elisabet Børsheim ◽  
Asle Aarsland ◽  
Robert R. Wolfe

This study tests the hypotheses that (a) a mixture of whey protein, amino acids (AA), and carbohydrates (CHO) stimulates net muscle protein synthesis to a greater extent than isoenergetic CHO alone after resistance exercise; and (b) that the stimulatory effect of a protein, AA, and CHO mixture will last beyond the 1 st hour after intake. Eight subjects participated in 2 trials. In one (PAAC), they ingested 77.4 g CHO, 17.5 g whey protein, and 4.9 g AA 1 hr after resistance exercise. In the other (CON), 100 g CHO was ingested instead. They received a primed constant infusion of L-[2H5]-phenylalanine, and samples from femoral artery and vein, and biopsies from vastus lateralis were obtained. The area under the curve for net uptake of phenylalanine into muscle above pre-drink value was 128 ±42 mg • leg-1 (PAAC) versus 32 ± 10 mg - leg-1 (CON) for the 3 hr after the drink (p = .04). The net protein balance response to the mixture consisted of two components, one rapid immediate response, and a smaller delayed response about 90 min after drink, whereas in CON only a small delayed response was seen. We conclude that after resistance exercise, a mixture of whey protein, AA, and CHO stimulated muscle protein synthesis to a greater extent than isoenergetic CHO alone. Further, compared to previously reported findings, the addition of protein to an AA + CHO mixture seems to extend the anabolic effect.


2007 ◽  
Vol 32 (6) ◽  
pp. 1132-1138 ◽  
Author(s):  
Jason E. Tang ◽  
Joshua J. Manolakos ◽  
Greg W. Kujbida ◽  
Paul J. Lysecki ◽  
Daniel R. Moore ◽  
...  

Whey protein is a supplemental protein source often used by athletes, particularly those aiming to gain muscle mass; however, direct evidence for its efficacy in stimulating muscle protein synthesis (MPS) is lacking. We aimed to determine the impact of consuming whey protein on skeletal muscle protein turnover in the post-exercise period. Eight healthy resistance-trained young men (age = 21 ± 1 .0 years; BMI = 26.8 ± 0.9 kg/m2 (means ± SE)) participated in a double-blind randomized crossover trial in which they performed a unilateral leg resistance exercise workout (EX: 4 sets of knee extensions and 4 sets of leg press; 8–10 repetitions/set; 80% of maximal), such that one leg was not exercised and acted as a rested (RE) comparator. After exercise, subjects consumed either an isoenergetic whey protein plus carbohydrate beverage (WHEY: 10 g protein and 21 g fructose) or a carbohydrate-only beverage (CHO: 21 g fructose and 10 g maltodextran). Subjects received pulse-tracer injections of l-[ring-2H5]phenylalanine and l-[15N]phenylalanine to measure MPS. Exercise stimulated a rise in MPS in the WHEY-EX and CHO-EX legs, which were greater than MPS in the WHEY-RE leg and the CHO-RE leg (all p < 0.05), respectively. The rate of MPS in the WHEY-EX leg was greater than in the CHO-EX leg (p < 0.001). We conclude that a small dose (10 g) of whey protein with carbohydrate (21 g) can stimulate a rise in MPS after resistance exercise in trained young men that would be supportive of a positive net protein balance, which, over time, would lead to hypertrophy.


1999 ◽  
Vol 24 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Michael E. Houston

Most athletes today tend to have a larger muscle mass than their predecessors. Better training and nutrition practices are responsible for much of this difference, but whatever the mechanism, the balance between muscle protein synthesis and breakdown must be in favor of increased muscle protein. Applying new techniques for measuring whole body and muscle protein synthesis to resistance exercise has led to some interesting results. In the recovery period following resistance exercise, both muscle protein synthesis and breakdown are accelerated in the fasted state. Ingestion of carbohydrate or carbohydrate and protein during recovery further increases muscle protein synthesis, due in part to an improved anabolic hormone environment. In addition, the anabolic effect of a resistance training bout may last well beyond 48 hours. Using information obtained from research studies, better training and dietary practices can optimize the benefits from resistance training, Key words: protein synthesis, protein breakdown, anabolic hormones, nutrition, resistance training


1992 ◽  
Vol 262 (3) ◽  
pp. E261-E267 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. A. Campbell ◽  
K. Smith ◽  
M. J. Rennie ◽  
J. O. Holloszy ◽  
...  

The purpose of this study was to determine whether growth hormone (GH) administration enhances the muscle anabolism associated with heavy-resistance exercise. Sixteen men (21-34 yr) were assigned randomly to a resistance training plus GH group (n = 7) or to a resistance training plus placebo group (n = 9). For 12 wk, both groups trained all major muscle groups in an identical fashion while receiving 40 micrograms recombinant human GH.kg-1.day-1 or placebo. Fat-free mass (FFM) and total body water increased (P less than 0.05) in both groups but more (P less than 0.01) in the GH recipients. Whole body protein synthesis rate increased more (P less than 0.03), and whole body protein balance was greater (P = 0.01) in the GH-treated group, but quadriceps muscle protein synthesis rate, torso and limb circumferences, and muscle strength did not increase more in the GH-treated group. In the young men studied, resistance exercise with or without GH resulted in similar increments in muscle size, strength, and muscle protein synthesis, indicating that 1) the larger increase in FFM with GH treatment was probably due to an increase in lean tissue other than skeletal muscle and 2) resistance training supplemented with GH did not further enhance muscle anabolism and function.


2013 ◽  
Vol 99 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Oliver C Witard ◽  
Sarah R Jackman ◽  
Leigh Breen ◽  
Kenneth Smith ◽  
Anna Selby ◽  
...  

2020 ◽  
Vol 111 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Sara Y Oikawa ◽  
Michael J Kamal ◽  
Erin K Webb ◽  
Chris McGlory ◽  
Steven K Baker ◽  
...  

ABSTRACT Background Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). Objectives The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE–induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). Methods In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. Results Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P &lt; 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P &lt; 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P &lt; 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P &lt; 0.001). Conclusions Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP. This trial was registered at clinicaltrials.gov as NCT03281434.


1993 ◽  
Vol 265 (2) ◽  
pp. E210-E214 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. J. Zachwieja ◽  
D. M. Bier

Muscle mass and function are improved in the elderly during resistance exercise training. These improvements must result from alterations in the rates of muscle protein synthesis and breakdown. We determined the rate of quadriceps muscle protein synthesis using the in vivo rate of incorporation of intravenously infused [13C]leucine into mixed-muscle protein in both young (24 yr) and elderly (63-66 yr) men and women before and at the end of 2 wk of resistance exercise training. Before training, the fractional rate of muscle protein synthesis was lower in the elderly than in the young (0.030 +/- 0.003 vs. 0.049 +/- 0.004%/h; P = 0.004) but increased (P < 0.03) to a comparable rate of muscle protein synthesis in both young (0.075 +/- 0.009%/h) and elderly subjects (0.076 +/- 0.011%/h) after 2 wk of exercise. In the elderly, muscle mass, 24-h urinary 3-methylhistidine and creatinine excretion, and whole body protein breakdown rate determined during the [13C]leucine infusion were not changed after 2 wk of exercise. These findings demonstrate that, during the initial phase of a resistance exercise training program, a marked increase in quadriceps muscle protein synthesis rate occurs in elderly and young adults without an increase in the rate of whole body protein breakdown. In the elderly, this was not accompanied by an increase in urinary 3-methylhistidine excretion, an index of myofibrillar protein breakdown.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Paul Reidy ◽  
Dillon K Walker ◽  
Jared M Dickinson ◽  
David M Gundermann ◽  
Micah J Drummond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document