scholarly journals Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Leonardo Dutra Henriques ◽  
Einat Hauzman ◽  
Daniela Maria Oliveira Bonci ◽  
Belinda S. W. Chang ◽  
José Augusto Pereira Carneiro Muniz ◽  
...  

AbstractPrimate colour vision depends on a matrix of photoreceptors, a neuronal post receptoral structure and a combination of genes that culminate in different sensitivity through the visual spectrum. Along with a common cone opsin gene for short wavelengths (sws1), Neotropical primates (Platyrrhini) have only one cone opsin gene for medium-long wavelengths (mws/lws) per X chromosome while Paleotropical primates (Catarrhini), including humans, have two active genes. Therefore, while female platyrrhines may be trichromats, males are always dichromats. The genus Alouatta is inferred to be an exception to this rule, as electrophysiological, behavioural and molecular analyses indicated a potential for male trichromacy in this genus. However, it is very important to ascertain by a combination of genetic and behavioural analyses whether this potential translates in terms of colour discrimination capability. We evaluated two howler monkeys (Alouatta spp.), one male A. caraya and one female A. seniculus, using a combination of genetic analysis of the opsin gene sequences and a behavioral colour discrimination test not previously used in this genus. Both individuals completed the behavioural test with performances typical of trichromatic colour vision and the genetic analysis of the sws1, mws, and lws opsin genes revealed three different opsin sequences in both subjects. These results are consistent with uniform trichromacy in both male and female, with presumed spectral sensitivity peaks similar to Catarrhini, at ~ 430 nm, 532 nm, and 563 nm for S-, M- and L-cones, respectively.

2017 ◽  
Vol 372 (1717) ◽  
pp. 20160075 ◽  
Author(s):  
Gillian L. Moritz ◽  
Perry S. Ong ◽  
George H. Perry ◽  
Nathaniel J. Dominy

The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers ( Tarsius syrichta ). Second, to explore whether the dichromatic visual systems of Philippine and Bornean ( Tarsius bancanus ) tarsiers—which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW / OPN1LW —confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW , indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey–background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo. This article is part of the themed issue ‘Vision in dim light’.


2013 ◽  
Vol 80 ◽  
pp. 41-50 ◽  
Author(s):  
Michelle McClements ◽  
Wayne I.L. Davies ◽  
Michel Michaelides ◽  
Joseph Carroll ◽  
Jungtae Rha ◽  
...  

2017 ◽  
Vol 372 (1717) ◽  
pp. 20160065 ◽  
Author(s):  
Almut Kelber ◽  
Carola Yovanovich ◽  
Peter Olsson

Colour discrimination is based on opponent photoreceptor interactions, and limited by receptor noise. In dim light, photon shot noise impairs colour vision, and in vertebrates, the absolute threshold of colour vision is set by dark noise in cones. Nocturnal insects (e.g. moths and nocturnal bees) and vertebrates lacking rods (geckos) have adaptations to reduce receptor noise and use chromatic vision even in very dim light. In contrast, vertebrates with duplex retinae use colour-blind rod vision when noisy cone signals become unreliable, and their transition from cone- to rod-based vision is marked by the Purkinje shift. Rod–cone interactions have not been shown to improve colour vision in dim light, but may contribute to colour vision in mesopic light intensities. Frogs and toads that have two types of rods use opponent signals from these rods to control phototaxis even at their visual threshold. However, for tasks such as prey or mate choice, their colour discrimination abilities fail at brighter light intensities, similar to other vertebrates, probably limited by the dark noise in cones. This article is part of the themed issue 'Vision in dim light’.


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181523 ◽  
Author(s):  
Jinwei Wu ◽  
Hengwu Jiao ◽  
Nancy B. Simmons ◽  
Qin Lu ◽  
Huabin Zhao

Detection of evolutionary shifts in sensory systems is challenging. By adopting a molecular approach, our earlier study proposed a sensory trade-off hypothesis between a loss of colour vision and an origin of high-duty-cycle (HDC) echolocation in Old World bats. Here, we test the hypothesis in New World bats, which include HDC echolocators that are distantly related to Old World HDC echolocators, as well as vampire bats, which have an infrared sensory system apparently unique among bats. Through sequencing the short-wavelength opsin gene ( SWS1 ) in 16 species (29 individuals) of New World bats, we identified a novel SWS1 polymorphism in an HDC echolocator: one allele is pseudogenized but the other is intact, while both alleles are either intact or pseudogenized in other individuals. Strikingly, both alleles were found to be pseudogenized in all three vampire bats. Since pseudogenization, transcriptional or translational changes could separately result in functional loss of a gene, a pseudogenized SWS1 indicates a loss of dichromatic colour vision in bats. Thus, the same sensory trade-off appears to have repeatedly occurred in the two divergent lineages of HDC echolocators, and colour vision may have also been traded off against the infrared sense in vampire bats.


Genome ◽  
2016 ◽  
Vol 59 (8) ◽  
pp. 541-549 ◽  
Author(s):  
John S. Taylor ◽  
Thomas E. Reimchen

The Neanderthals’ northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust’-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that “control” loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals.


2002 ◽  
Vol 42 (15) ◽  
pp. 1888-1896 ◽  
Author(s):  
H Knau ◽  
J Kremers ◽  
H.-J Schmidt ◽  
S Wolf ◽  
B Wissinger ◽  
...  

2021 ◽  
Author(s):  
Amy M Streets ◽  
Hayley England ◽  
Justin Marshall

Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivities but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method of colour processing. We investigated one hypothesis, in which the photoreceptors are proposed to act as individual wave-band detectors, interpreting colour as a parallel pattern of photoreceptor activation, rather than a ratiometric comparison of individual signals. This different form of colour detection has been used to explain previous behavioural tests in which low saturation blue was not discriminated from grey potentially because of similar activation patterns. Results here, however, indicate that the stomatopod, Haptosquilla trispinosa was able to easily distinguish several colours, including blue of both high and low saturation, from greys. The animals did show a decrease in performance over time in an artificially lit environment, indicating plasticity in colour discrimination ability. This rapid plasticity, most likely the result of a change in opsin (visual pigment) expression, has now been noted in several animal lineages (both invertebrate and vertebrate) and is a factor we suggest needing care and potential re-examination in any colour-based behavioural tests. As for stomatopods, it remains unclear why they achieve poor colour discrimination using the most comprehensive set of spectral sensitivities in the animal kingdom and also what form of colour processing they may utilise.


1998 ◽  
Vol 38 (21) ◽  
pp. 3321-3327 ◽  
Author(s):  
B.C Regan ◽  
C Julliot ◽  
B Simmen ◽  
F Viénot ◽  
P Charles-Dominique ◽  
...  

2009 ◽  
Vol 6 (3) ◽  
pp. 370-374 ◽  
Author(s):  
Anders Ödeen ◽  
Olle Håstad ◽  
Per Alström

Diurnal birds belong to one of two classes of colour vision. These are distinguished by the maximum absorbance wavelengths of the SWS1 visual pigment sensitive to violet (VS) and ultraviolet (UVS). Shifts between the classes have been rare events during avian evolution. Gulls (Laridae) are the only shorebirds (Charadriiformes) previously reported to have the UVS type of opsin, but too few species have been sampled to infer that gulls are unique among shorebirds or that Laridae is monomorphic for this trait. We have sequenced the SWS1 opsin gene in a broader sample of species. We confirm that cysteine in the key amino acid position 90, characteristic of the UVS class, has been conserved throughout gull evolution but also that the terns Anous minutus, A. tenuirostris and Gygis alba , and the skimmer Rynchops niger carry this trait. Terns, excluding Anous and Gygis , share the VS conferring serine in position 90 with other shorebirds but it is translated from a codon more similar to that found in UVS shorebirds. The most parsimonious interpretation of these findings, based on a molecular gene tree, is a single VS to UVS shift and a subsequent reversal in one lineage.


Sign in / Sign up

Export Citation Format

Share Document