scholarly journals A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao Wang ◽  
Chi Ma ◽  
Rihan Davis ◽  
Rahul R. Parikh ◽  
Salma K. Jabbour ◽  
...  

Abstract Purpose To develop a novel approach to accurately verify patient set up in proton radiotherapy, especially for the verification of the nozzle – body surface air gap and source-to-skin distance (SSD), the consistency and accuracy of which is extremely important in proton treatment. Methods Patient body surfaces can be captured and monitored with the optical surface imaging system during radiation treatment for improved intrafraction accuracy. An in-house software package was developed to reconstruct the patient body surface in the treatment position from the optical surface imaging reference capture and to calculate the corresponding nozzle – body surface air gap and SSD. To validate this method, a mannequin was scanned on a CT simulator and proton plans were generated for a Mevion S250 Proton machine with 20 gantry/couch angle combinations, as well as two different snout sizes, in the Varian Eclipse Treatment Planning Systems (TPS). The surface generated in the TPS from the CT scan was imported into the optical imaging system as an RT Structure for the purpose of validating and establishing a benchmark for ground truth comparison. The optical imaging surface reference capture was acquired at the treatment setup position after orthogonal kV imaging to confirm the positioning. The air gaps and SSDs calculated with the developed method from the surface captured at the treatment setup position (VRT surface) and the CT based surface imported from the TPS were compared to those calculated in TPS. The same approach was also applied to 14 clinical treatment fields for 10 patients to further validate the methodology. Results The air gaps and SSDs calculated from our program agreed well with the corresponding values derived from the TPS. For the phantom results, using the CT surface, the absolute differences in the air gap were 0.45 mm ± 0.33 mm for the small snout, and 0.51 mm ± 0.49 mm for the large snout, and the absolute differences in SSD were 0.68 mm ± 0.42 mm regardless of snout size. Using the VRT surface, the absolute differences in air gap were 1.17 mm ± 1.17 mm and 2.1 mm ± 3.09 mm for the small and large snouts, respectively, and the absolute differences in SSD were 0.81 mm ± 0.45 mm. Similarly, for patient data, using the CT surface, the absolute differences in air gap were 0.42 mm ± 0.49 mm, and the absolute differences in SSD were 1.92 mm ± 1.4 mm. Using the VRT surface, the absolute differences in the air gap were 2.35 mm ± 2.3 mm, and the absolute differences in SSD were 2.7 mm ± 2.17 mm. Conclusion These results showed the feasibility and robustness of using an optical surface imaging approach to conveniently determine the air gap and SSD in proton treatment, providing an accurate and efficient way to confirm the target depth at treatment.

2020 ◽  
Vol 20 (3) ◽  
pp. 139-144
Author(s):  
Cheng-Yang Liu ◽  
Tzu-Ping Yen ◽  
Chien-Wen Chen

AbstractThe three-dimensional (3-D) micro-scale surface imaging system based on the digital fringe projection technique for the assessments of microfiber and metric screw is presented in this paper. The proposed system comprises a digital light processing (DLP) projector, a set of optical lenses, a microscope, and a charge coupled device (CCD). The digital seven-step fringe patterns from the DLP projector pass through a set of optical lenses before being focused on the target surface. A set of optical lenses is designed for adjustment and size coupling of fringe patterns. A high-resolution CCD camera is employed to picture these distorted fringe patterns. The wrapped phase map is calculated by seven-step phase-shifting calculation from these distorted fringe patterns. The unwrapping calculation with quality guided path is introduced to compute the absolute phase values. The dimensional calibration methods are used to acquire the transformation between real 3-D shape and the absolute phase value. The capability of complex surface measurement for our system is demonstrated by using ISO standard screw M1.6. The experimental results for microfiber with 3 μm diameter indicate that the spatial and vertical resolutions can reach about 3 μm in our system. The proposed system provides a fast digital imaging system to examine the surface features with high-resolution for automatic optical inspection industry.


1995 ◽  
Vol 34 (4) ◽  
pp. 362-371 ◽  
Author(s):  
Luci Ann P. Kohn ◽  
James M. Cheverud ◽  
Gulab Bhatia ◽  
Paul Commean ◽  
Kirk Smith ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jose R. Navas-Blanco ◽  
Sofia A. Lifgren ◽  
Roman Dudaryk ◽  
Jeffrey Scott ◽  
Matthias Loebe ◽  
...  

Abstract Background The complexity of extracorporeal membrane oxygenation (ECMO) techniques continues to evolve. Different cannulation methods and configurations have been proposed as a response to a challenging cardiovascular and pulmonary physiology of the patients. The use of parallel ECMO circuits represents a unique and novel approach for patients with refractory respiratory failure and cardiovascular collapse with very large body surface areas. Case presentation We present the case of a 25-year-old morbidly obese male patient admitted for severe acute respiratory distress syndrome (ARDS) and refractory hypoxemia, requiring institution of double cannulation for veno-venous ECMO. Since his hypoxemia persisted, likely due to insufficient flows given his large body surface area, an additional drainage venous cannula was implemented to provide higher flows, temporarily addressing his oxygenation status. Unfortunately, the patient developed concomitant cardiogenic shock refractory to inotropic support and extracorporeal fluid removal, further worsening his oxygenation status, thus the decision was to institute four-cannulation/parallel-circuits veno-venous and veno-arterial ECMO, successfully controlling both refractory hypoxemia and cardiogenic shock. Conclusions Our case illustrates a novel and complex approach for combined severe ARDS and cardiovascular collapse through the use of parallel veno-venous and veno-arterial ECMO circuits, and exemplifies the expansion of ECMO techniques and its life-saving capabilities when conservative approaches are futile.


2015 ◽  
Vol 42 (4) ◽  
pp. 1690-1697 ◽  
Author(s):  
Guang Li ◽  
Hailiang Huang ◽  
Jie Wei ◽  
Diana G. Li ◽  
Qing Chen ◽  
...  

1912 ◽  
Vol 15 (2) ◽  
pp. 113-118 ◽  
Author(s):  
F. H. McCrudden ◽  
H. L. Fales

In three cases of intestinal infantilism, the excretion of nitrogen in the urine per square meter of body surface was low. The heat radiation was normal. In spite of the fact that the absolute quantity of nitrogen was low, the distribution of nitrogen and sulphur among the various nitrogen and sulphur constituents of the urine was in the normal ratio. The ammonia excretion was normal. The ethereal sulphates were slightly increased. The respiratory coefficient showed that the supply of glycogen had not been used up after eighteen hours' starvation.


2017 ◽  
Vol 164 (1) ◽  
pp. 15-18 ◽  
Author(s):  
Lee Tilsley ◽  
D J Carr ◽  
C Lankester ◽  
C Malbon

IntroductionBody armour typically comprises a fabric garment covering the torso combined with hard armour (ceramic/composite). Some users wear only soft armour which provides protection from sharp weapons and pistol ammunition. It is usually recommended that body armour is worn against the body with no air-gaps being present between the wearer and the armour. However, air-gaps can occur in certain situations such as females around the breasts, in badly fitting armour and where manufacturers have incorporated an air-gap claiming improvements in thermophysiological burden. The effect of an air-gap on the ballistic protection and the back face signature (BFS) as a result of a non-perforating ballistic impact was determined.MethodsArmour panels representative of typical police armour (400x400 mm) were mounted on calibrated Roma Plastilina No 1 and impacted with 9 mm Luger FMJ (9×19 mm; full metal jacket; Dynamit Nobel DM11A1B2) ammunition at 365±10 m/s with a range of air-gaps (0–15 mm). Whether or not the ammunition perforated the armour was noted, the BFS was measured and the incidence of pencilling (a severe, deep and narrow BFS) was identified.ResultsFor 0° impacts, a critical air-gap size of 10 mm is detrimental to armour performance for the armour/ammunition combination assessed in this work. Specifically, the incidences of pencilling were more common with a 10 mm air-gap and resulted in BFS depth:volume ratios ≥1.0. For impacts at 30° the armour was susceptible to perforation irrespective of air-gap.ConclusionsThis work suggested that an air-gap behind police body armour might result in an increased likelihood of injury. It is recommended that body armour is worn with no air-gap underneath.


2021 ◽  
Vol 16 (12) ◽  
pp. T12005
Author(s):  
J. Nagata ◽  
S. Yamamoto ◽  
Y. Noguchi ◽  
T. Nakaya ◽  
K. Okudaira ◽  
...  

Abstract In high-dose-rate (HDR) brachytherapy, verification of the Ir-192 source's position during treatment is needed because such a source is extremely radioactive. One of the methods used to measure the source position is based on imaging the gamma rays from the source, but the absolute position in a patient cannot be confirmed. To confirm the absolute position, it is necessary to acquire an optical image in addition to the gamma ray image at the same time as well as the same position. To simultaneously image the gamma ray and optical images, we developed an imaging system composed of a low-sensitivity, high-resolution gamma camera integrated with a CMOS camera. The gamma camera has a 1-mm-thick cerium-doped yttrium aluminum perovskite (YAIO3: YAP(Ce)) scintillator plate optically coupled to a position-sensitive photomultiplier (PSPMT), and a 0.1-mm-diameter pinhole collimator was mounted in front of the camera to improve spatial resolution and reduce sensitivity. We employed the concept of a periscope by placing two mirrors tilted at 45 degrees facing each other in front of the gamma camera to image the same field of view (FOV) for the gamma camera and the CMOS camera. The spatial resolution of the imaging system without the mirrors at 100 mm from the Ir-192 source was 3.2 mm FWHM, and the sensitivity was 0.283 cps/MBq. There was almost no performance degradation observed when the mirrors were positioned in front of the gamma camera. The developed system could measure the Ir-192 source positions in optical and gamma ray images. We conclude that the developed imaging system has the potential to measure the absolute position of an Ir-192 source in real-time clinical measurements.


Sign in / Sign up

Export Citation Format

Share Document