scholarly journals Establishing and characterizing a new primary effusion lymphoma cell line harboring Kaposi’s sarcoma–associated herpesvirus

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Madori Osawa ◽  
Sohtaro Mine ◽  
Shinichiro Ota ◽  
Kengo Kato ◽  
Tsuyoshi Sekizuka ◽  
...  
1999 ◽  
Vol 73 (12) ◽  
pp. 10329-10338 ◽  
Author(s):  
Vasundhara Varthakavi ◽  
Philip J. Browning ◽  
Paul Spearman

ABSTRACT Human immunodeficiency virus (HIV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) coinfect many individuals in North America and in parts of Africa. Infection with HIV is a leading risk factor for the development of Kaposi’s sarcoma (KS). In this study, we tested the hypothesis that HIV infection of common or adjacent cells would stimulate replication and spread of KSHV. Infection of a primary effusion lymphoma cell line by vesicular stomatitis virus type G-pseudotyped HIV type 1 led to a rapid induction of lytic-phase KSHV replication. Induction of lytic KSHV replication by HIV required active replication of HIV. The addition of the nucleoside reverse transcriptase inhibitor azidothymidine or the protease inhibitor indinavir to the culture prevented HIV spread and inhibited the associated induction of KSHV lytic replication. Lytic replication occurred in both HIV-infected and HIV-uninfected cells within the culture, and could be induced in uninfected cells via a soluble factor released from the HIV-infected cells. Transmission of infectious KSHV to an uninfected target cell was enhanced by HIV replication and was inhibited by antiretroviral drugs. These results may have implications for the pathogenesis and treatment of KS in individuals coinfected with KSHV and HIV.


2000 ◽  
Vol 74 (13) ◽  
pp. 6207-6212 ◽  
Author(s):  
Lyndle Gradoville ◽  
Jennifer Gerlach ◽  
Elizabeth Grogan ◽  
Duane Shedd ◽  
Sarah Nikiforow ◽  
...  

ABSTRACT Rta, the gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) encoded mainly in open reading frame 50 (ORF50), is capable of activating expression of viral lytic cycle genes. What was not demonstrated in previous studies was whether KSHV Rta was competent to initiate the entire viral lytic life cycle including lytic viral DNA replication, late-gene expression with appropriate kinetics, and virus release. In HH-B2, a newly established primary effusion lymphoma (PEL) cell line, KSHV ORF50 behaved as an immediate-early gene and autostimulated its own expression. Expression of late genes, ORF65, and K8.1 induced by KSHV Rta was eliminated by phosphonoacetic acid, an inhibitor of viral DNA polymerase. Transfection of KSHV Rta increased the production of encapsidated DNase-resistant viral DNA from HH-B2 cells. Thus, introduction of an ORF50 expression plasmid is sufficient to drive the lytic cycle to completion in cultured PEL cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Keiji Ueda ◽  
Eriko Ohsaki ◽  
Kazushi Nakano ◽  
Xin Zheng

Among herpesviruses, γ-herpesviruses are supposed to have typical oncogenic activities. Two human γ-herpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are putative etiologic agents for Burkitt lymphoma, nasopharyngeal carcinoma, and some cases of gastric cancers, and Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma (PEL) especially in AIDS setting for the latter case, respectively. Since such two viruses mentioned above are highly species specific, it has been quite difficult to prove their oncogenic activities in animal models. Nevertheless, the viral oncogenesis is epidemiologically and/or in vitro experimentally evident. This time, we investigated gene expression profiles of KSHV-oriented lymphoma cell lines, EBV-oriented lymphoma cell lines, and T-cell leukemia cell lines. Both KSHV and EBV cause a B-cell-originated lymphoma, but the gene expression profiles were typically classified. Furthermore, KSHV could govern gene expression profiles, although PELs are usually coinfected with KSHV and EBV.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1686-1689 ◽  
Author(s):  
Taizo Tasaka ◽  
Jonathan W. Said ◽  
Roberta Morosetti ◽  
Dorothy Park ◽  
Walter Verbeek ◽  
...  

Abstract Controversy exists as to whether Kaposi's sarcoma–associated herpesvirus (KSHV) is more widespread than originally reported. Recently, Monini et al reported that KSHV is ubiquitous in urogenital and prostate tissues and sperm of healthy Italian adults using nested polymerase chain reaction (PCR). We have examined for the presence of KSHV in 10 normal prostates from Italian men and 10 from men from the United States, as well as 32 prostatic, 30 vulvar, 24 ovarian, 20 cervical, and 30 testicular cancer specimens from patients from the United States. None of the patients had a history of human immunodeficiency virus infection. The samples were tested by nested PCR. The sensitivity of this assay was determined by a dilution study performed by diluting KSHV DNA from the KS-1 cells (a primary effusion lymphoma cell line which is estimated to have 16 copies of KSHV per cell) in DNA from a K562 myeloid cell line. The nested PCR that we used can detect 2.4 copies of KSHV sequences on a background of K562 DNA. All the samples were negative for KSHV sequences. Therefore, we cannot confirm the finding that KSHV sequences are ubiquitous in urogenital and prostate tissues. Furthermore, because our samples were from both the United States and Italy, the discrepancy between results is unlikely to be explained by either ethnic or environmental factors. False-positive results easily occur using nested primer PCR because of contamination. Our data argue that KSHV is not widely disseminated in urogenital tissues from nonimmunosuppressed individuals.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1686-1689 ◽  
Author(s):  
Taizo Tasaka ◽  
Jonathan W. Said ◽  
Roberta Morosetti ◽  
Dorothy Park ◽  
Walter Verbeek ◽  
...  

Controversy exists as to whether Kaposi's sarcoma–associated herpesvirus (KSHV) is more widespread than originally reported. Recently, Monini et al reported that KSHV is ubiquitous in urogenital and prostate tissues and sperm of healthy Italian adults using nested polymerase chain reaction (PCR). We have examined for the presence of KSHV in 10 normal prostates from Italian men and 10 from men from the United States, as well as 32 prostatic, 30 vulvar, 24 ovarian, 20 cervical, and 30 testicular cancer specimens from patients from the United States. None of the patients had a history of human immunodeficiency virus infection. The samples were tested by nested PCR. The sensitivity of this assay was determined by a dilution study performed by diluting KSHV DNA from the KS-1 cells (a primary effusion lymphoma cell line which is estimated to have 16 copies of KSHV per cell) in DNA from a K562 myeloid cell line. The nested PCR that we used can detect 2.4 copies of KSHV sequences on a background of K562 DNA. All the samples were negative for KSHV sequences. Therefore, we cannot confirm the finding that KSHV sequences are ubiquitous in urogenital and prostate tissues. Furthermore, because our samples were from both the United States and Italy, the discrepancy between results is unlikely to be explained by either ethnic or environmental factors. False-positive results easily occur using nested primer PCR because of contamination. Our data argue that KSHV is not widely disseminated in urogenital tissues from nonimmunosuppressed individuals.


2004 ◽  
Vol 78 (20) ◽  
pp. 11108-11120 ◽  
Author(s):  
Jian-Hong Deng ◽  
Yan-Jin Zhang ◽  
Xin-Ping Wang ◽  
Shou-Jiang Gao

ABSTRACT Defective viruses often have pivotal roles in virus-induced diseases. Although Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), defective KSHV has not been reported. Using differential genetic screening methods, we show that defective KSHV is present in KS tumors and PEL cell lines. To investigate the role of defective viruses in KSHV-induced pathogenesis, we isolated and characterized a lytic replication-defective KSHV, KV-1, containing an 82-kb genomic deletion of solely lytic genes. Cells harboring KV-1 escaped G0/G1 apoptosis induced by spontaneous lytic replication occurred in cells infected with regular KSHV but maintained efficient latent replication. Consequently, KV-1-infected cells had phenotypes of enhanced cell proliferation and transformation potentials. Importantly, KV-1 was packaged as infectious virions by using regular KSHV as helpers, and KV-1-like variants were detected in cultures of two of five KSHV cell lines and 1 of 18 KS tumors. These results point to a potential role for defective viruses in the regulation of KSHV infection and malignant transformation.


2015 ◽  
Vol 89 (9) ◽  
pp. 4786-4797 ◽  
Author(s):  
Xin Zheng ◽  
Eriko Ohsaki ◽  
Keiji Ueda

ABSTRACTAngiopoietin-1 (ANGPT-1) is a secreted glycoprotein that was first characterized as a ligand of the Tie2 receptor. In a previous study using microarray analysis, we found that the expression of ANGPT-1 was upregulated in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected primary effusion lymphoma (PEL) cell lines compared with that in uninfected Burkitt and other leukemia cell lines. Other authors have also reported focal expression of ANGPT-1 mRNA in biopsy specimens of Kaposi's sarcoma (KS) tissue from patients with AIDS. Here, to confirm these findings, we examined the expression and secretion levels of ANGPT-1 in KSHV-infected PEL cell lines and address the mechanisms ofANGPT-1transcriptional regulation. We also showed that ANGPT-1 was expressed and localized in the cytoplasm and secreted into the supernatant of KSHV-infected PEL cells. Deletion studies of the regulatory region revealed that the region encompassing nucleotides −143 to −125 of theANGPT-1-regulating sequence was responsible for this upregulation. Moreover, an electrophoretic mobility shift assay and chromatin immunoprecipitation, followed by quantitative PCR, suggested that some KSHV-infected PEL cell line-specific DNA-binding factors, such as OCT-1, should be involved in the upregulation ofANGPT-1in a sequence-dependent manner.IMPORTANCEWe confirmed that ANGPT-1 was expressed in and secreted from KSHV-infected PEL cells and that the transcriptional activity ofANGPT-1was upregulated. A 19-bp fragment was identified as the region responsible forANGPT-1upregulation through binding with OCT-1 as a core factor in PEL cells. This study suggests that ANGPT-1 is overproduced in KSHV-infected PEL cells, which could affect the pathophysiology of AIDS patients with PEL.


Sign in / Sign up

Export Citation Format

Share Document