scholarly journals Sex difference in synaptic plasticity in the anterior cingulate cortex of adult mice

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ren-Hao Liu ◽  
Man Xue ◽  
Xu-Hui Li ◽  
Min Zhuo
2020 ◽  
Author(s):  
Ren-Hao Liu ◽  
Man Xue ◽  
Xu-Hui Li ◽  
Min Zhuo

Abstract Sex differences in certain types of pain sensitivity and emotional responses have been previously reported. Synaptic plasticity is a key cellular mechanism for pain perception and emotional regulation, including long-term potentiation (LTP) and long-term depression (LTD). However, it is unclear whether there is a sex difference at synaptic level. Recent studies indicate that excitatory transmission and plasticity in the anterior cingulate cortex (ACC) are critical in chronic pain and pain related emotional responses. In the present study, we used 64-channel multielectrode (MED64) system to record synaptic plasticity in the ACC of male and female adult mice. We found that there was no significant difference in theta-burst stimulation (TBS)-induced LTP between female and male mice. Furthermore, the recruitment of inactive channels was also not different. For LTD, we found that LTD was greater in slices of ACC in male mice than female mice. Our results demonstrate that LTP in the ACC does not show any sex-related difference.


2020 ◽  
Author(s):  
Ren-Hao Liu ◽  
Man Xue ◽  
Xu-Hui Li ◽  
Min Zhuo

Abstract Gender differences in certain types of pain sensitivity and emotional responses have been previously reported. Synaptic plasticity is a key cellular mechanism for pain perception and emotional regulation, including long-term potentiation (LTP) and long-term depression (LTD). However, it is unclear whether there is a gender difference at synaptic level. Recent studies indicate that excitatory transmission and plasticity in the anterior cingulate cortex (ACC) are critical in chronic pain and pain related emotional responses. In the present study, we used 64-channel multielectrode (MED64) system to record synaptic plasticity in the ACC of male and female adult mice. We found that there was no significant difference in theta-burst stimulation (TBS)-induced LTP between female and male mice. Furthermore, the recruitment of inactive channels was also not different. For LTD, we found that LTD was greater in slices of ACC in male mice than female mice. Our results demonstrate that LTP in the ACC does not show any gender-related difference.


2016 ◽  
Vol 17 (8) ◽  
pp. 485-496 ◽  
Author(s):  
Tim V. P. Bliss ◽  
Graham L. Collingridge ◽  
Bong-Kiun Kaang ◽  
Min Zhuo

2020 ◽  
Author(s):  
Han Lu ◽  
Júlia V. Gallinaro ◽  
Claus Normann ◽  
Stefan Rotter ◽  
Ipek Yalcin

AbstractSynapse formation and network rewiring is key to build neural circuits during development and has been widely observed in adult brains. Maintaining neural activity with the help of synaptic plasticity is essential to enable normal brain function. The model of homeostatic structural plasticity (HSP) was proposed to reflect the homeostatic regulation of neural activity and explain structural changes seen after perturbations. However, the specific temporal profile of such plastic responses has not yet been elucidated in experiments. To address this issue, we combined computational modeling and mouse optogenetic stimulation experiments. Our model predicted that within 48 h post-stimulation, neural activity returns to baseline, while the connectivity among stimulated neurons follows a very specific transient increase and decrease. To capture such dynamics experimentally in vivo, we activated the pyramidal neurons in the anterior cingulate cortex of mice and harvested their brains at 1.5 h, 24 h, and 48 h post-stimulation. Cortical hyperactivity as demonstrated by robust c-Fos expression persisted up to 1.5 h and decayed to baseline after 24 h. However, spine density and spine head volume were increased at 24 h and decreased at 48 h. Synaptic proteins VGLUT1 and PSD-95 were also upregulated and downregulated at 24 h and 48 h, respectively, while the calmodulin-binding protein neurogranin was translocated from the soma to the dendrite. Additionally, lasting astrocyte reactivation and microglia proliferation were observed, suggesting a role of neuron-glia interaction. All this corroborates the interpretation of our experimental results in terms of homeostatic structural plasticity. Our results bring important insights of how external stimulation modulates synaptic plasticity and behaviors.Significance StatementWe combined both computational modeling and mouse experiments to clarify the temporal dynamics of structural and functional homeostatic plasticity in response to external stimulation. We observed the biphasic regulation of spine density, spine head volume, and synaptic proteins at 24 h and 48 h after the optogenetic stimulation of the anterior cingulate cortex, when the neural activity was restored to the homeostatic level. The orchestrated regulation of presynaptic VGLUT1 and postsynaptic PSD-95, as well as the soma-dendrites translocation of neurogranin, suggested an elaborate molecular mechanism underlying homeostatic structural plasticity. Our experimental results thus corroborated the theoretical concept of homeostatic structural plasticity and revealed the temporal evolution of structural and functional plasticity.


2016 ◽  
Vol 124 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Zhi-Yu Chen ◽  
Feng-Yan Shen ◽  
Lai Jiang ◽  
Xuan Zhao ◽  
Xiao-Lu Shen ◽  
...  

Abstract Background Synaptic mechanisms and neuronal oscillations have been proposed to be responsible for neuropathic pain formation. Many studies have also highlighted the important role of electrical synapses in synaptic plasticity and in neuronal oscillations. Thus, electrical synapses may contribute to neuropathic pain generation. However, previous studies have primarily focused on the role of chemical synapses, while ignoring the role of electrical synapses, in neuropathic pain generation. Methods The authors adopted microinjection, RNA interference techniques, and behavioral tests to verify the link between connexin 36 (Cx36) and neuropathic pain. They also studied the selective Cx36 blocker mefloquine in rat chronic constriction injury and spared nerve injury model of neuropathic pain. Electrophysiologic recordings were used to further confirm the behavioral data. Results The authors found that Cx36, which constitutes the neuron–neuron electrical synapses, was up-regulated in the anterior cingulate cortex after nerve injury (n = 5). Meanwhile, Cx36-mediated neuronal oscillations in the gamma frequency range (30 to 80 Hz) (n = 7 to 8) and the neuronal synaptic transmission (n = 13 to 19) were also enhanced. Neuropathic pain was relieved by disrupting Cx36 function or expression in the anterior cingulate cortex. They also found that mefloquine, which are clinically used for treating malaria, affected gamma oscillations and synaptic plasticity, leading to a sustained pain relief in chronic constriction injury and spared nerve injury models (n = 7 to 12). Conclusion The electrical synapses blocker mefloquine could affect gamma oscillations and synaptic plasticity in the anterior cingulate cortex and relieve neuropathic pain. Cx36 may be a new therapeutic target for treating chronic pain.


Sign in / Sign up

Export Citation Format

Share Document