scholarly journals Pharmacological blockade of dopamine D1- or D2-receptor in the prefrontal cortex induces attentional impairment in the object-based attention test through different neuronal circuits in mice

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bolati Wulaer ◽  
Kazuo Kunisawa ◽  
Moeka Tanabe ◽  
Aika Yanagawa ◽  
Kuniaki Saito ◽  
...  

AbstractDopamine is a key neurotransmitter that regulates attention through dopamine D1 and D2-receptors in the prefrontal cortex (PFC). We previously developed an object-based attention test (OBAT) to evaluate attention in mice. Disruption of the dopaminergic neuronal system in the PFC induced attentional impairment in the OBAT. However, previous studies have not systematically examined which specific brain regions are associated with the blockade of PFC dopamine D1 and D2-receptors in the OBAT. In this study, we investigated the association of dopamine D1 and D2-receptors in the PFC with attention and neuronal activity in diverse brain regions. We found that both dopamine D1 and D2-receptor antagonists induced attentional impairment in the OBAT by bilateral microinjection into the PFC of mice, suggesting that both dopamine D1 and D2-receptors were associated with attention in the OBAT. Our analysis of the neuronal activity as indicated by c-Fos expression in 11 different brain regions showed that based on the antagonist types, there was selective activation of several brain regions. Overall, this study suggests that both dopamine D1 and D2-receptors play a role in attention through different neuronal circuits in the PFC of mice.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Ye ◽  
Xiao-Lei Yuan ◽  
Jie Zhou ◽  
Can-xing Yuan ◽  
Xu-ming Yang

This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID). We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN) was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.


2019 ◽  
Vol 67 ◽  
pp. 182-189 ◽  
Author(s):  
Vinícia Garzella Metz ◽  
Hecson Jesser Segat ◽  
Verônica Tironi Dias ◽  
Raquel Cristine Silva Barcelos ◽  
Luana Haselein Maurer ◽  
...  

2020 ◽  
Author(s):  
Sara M. Green ◽  
Sanya Nathani ◽  
Joseph Zimmerman ◽  
David Fireman ◽  
Nikhil M. Urs

ABSTRACTThe cortex plays an important role in regulating motivation and cognition, and does so by regulating multiple subcortical brain circuits. Glutamatergic pyramidal neurons in the prefrontal cortex (PFC) are topographically organized in different subregions such as the prelimbic, infralimbic and orbitofrontal, and project to topographically-organized subcortical target regions. Dopamine D1 and D2 receptors are expressed on glutamatergic pyramidal neurons in the PFC. However, it is unclear whether D1 and D2 receptor-expressing pyramidal neurons in the PFC are also topographically organized. We used a retrograde adeno-associated virus (AAVRG)-based approach to illuminate the topographical organization of D1 and D2 receptor-expressing neurons, projecting to distinct striatal and midbrain subregions. Our experiments reveal that AAVRG injection in the nucleus accumbens (NAcc) or dorsal striatum (dSTR) of D1Cre mice labeled distinct neuronal subpopulations in medial orbitofrontal or prelimbic PFC, respectively. However, AAVRG injection in NAcc or dSTR of D2Cre mice labeled medial orbitofrontal, but not medial prelimbic PFC, respectively. Additionally, D2R+ but not D1R+ PFC neurons were labeled upon injection of AAVRG in substantia nigra pars compacta (SNpc). Thus, our data are the first to highlight a unique dopamine receptor-specific topographical pattern in the PFC, which could have profound implications for corticostriatal signaling in the basal ganglia.SIGNIFICANCE STATEMENTCorticostriatal connections play an important role in regulating goal-directed and habitual behavior, and neuromodulators such as cortical dopamine play an important role in behavioral flexibility. Dopamine receptor expressing D1R+ and D2R+ projection neurons in the cortex mediate the effects of cortical dopamine, but whether these neurons are anatomically organized in a manner that would explain how these neurons mediate these complex effects, is not clear. Our results show a distinct topographical organization of D1R+ and D2R+ PFC pyramidal neurons that project to distinct striatal and midbrain subregions. These results suggest that effects of cortical dopamine are mediated by anatomically localized distinct receptor- and target-defined subcircuits.


Author(s):  
Vincent R. Daria ◽  
Michael Lawrence Castañares ◽  
Hans-A. Bachor

AbstractThe challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.


2018 ◽  
Vol 137 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Kohei Takahashi ◽  
Osamu Nakagawasai ◽  
Wataru Nemoto ◽  
Takayo Odaira ◽  
Wakana Sakuma ◽  
...  

Synapse ◽  
1995 ◽  
Vol 19 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Stephen L. Vincent ◽  
Yusuf Khan ◽  
Francine M. Benes

Sign in / Sign up

Export Citation Format

Share Document