scholarly journals Effect of soluble amyloid precursor protein-alpha on adult hippocampal neurogenesis in a mouse model of Alzheimer’s disease

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Shane M. Ohline ◽  
Connie Chan ◽  
Lucia Schoderboeck ◽  
Hollie E. Wicky ◽  
Warren P. Tate ◽  
...  

AbstractSoluble amyloid precursor protein-alpha (sAPPα) is a regulator of neuronal and memory mechanisms, while also having neurogenic and neuroprotective effects in the brain. As adult hippocampal neurogenesis is impaired in Alzheimer’s disease, we tested the hypothesis that sAPPα delivery would rescue adult hippocampal neurogenesis in an APP/PS1 mouse model of Alzheimer’s disease. An adeno-associated virus-9 (AAV9) encoding murine sAPPα was injected into the hippocampus of 8-month-old wild-type and APP/PS1 mice, and later two different thymidine analogues (XdU) were systemically injected to label adult-born cells at different time points after viral transduction. The proliferation of adult-born cells, cell survival after eight weeks, and cell differentiation into either neurons or astrocytes was studied. Proliferation was impaired in APP/PS1 mice but was restored to wild-type levels by viral expression of sAPPα. In contrast, sAPPα overexpression failed to rescue the survival of XdU+-labelled cells that was impaired in APP/PS1 mice, although it did cause a significant increase in the area density of astrocytes in the granule cell layer across both genotypes. Finally, viral expression of sAPPα reduced amyloid-beta plaque load in APP/PS1 mice in the dentate gyrus and somatosensory cortex. These data add further evidence that increased levels of sAPPα could be therapeutic for the cognitive decline in AD, in part through restoration of the proliferation of neural progenitor cells in adults.

2021 ◽  
Author(s):  
Shane M. Ohline ◽  
Connie Chan ◽  
Lucia Schoderboeck ◽  
Hollie E. Wicky ◽  
Warren P. Tate ◽  
...  

Abstract Soluble amyloid precursor protein-alpha (sAPPα) is a regulator of neuronal and memory mechanisms, while also having neurogenic and neuroprotective effects in the brain. As adult hippocampal neurogenesis is impaired in Alzheimer’s disease, we tested the hypothesis that sAPPα delivery would rescue adult hippocampal neurogenesis in an APP/PS1 mouse model of Alzheimer’s disease. An adeno-associated virus-9 (AAV9) encoding murine sAPPα was injected into the hippocampus of 8 month-old wild-type and APP/PS1 mice, and later two different thymidine analogues (XdU) were systemically injected to label adult-born cells at different time points after viral transduction. The proliferation of adult-born cells, cell survival after eight weeks, and cell differentiation into either neurons or astrocytes was studied. Proliferation was impaired in APP/PS1 mice but was restored to wild-type levels by viral expression of sAPPα. In contrast, sAPPα overexpression failed to rescue the survival of XdU+-labelled cells that was impaired in APP/PS1 mice, although it did cause a significant increase in the area density of astrocytes in the granule cell layer across both genotypes. Finally, viral expression of sAPPα reduced amyloid-beta plaque load in APP/PS1 mice in the dentate gyrus and somatosensory cortex. These data add further evidence that increased levels of sAPPα could be therapeutic for the cognitive decline in AD, in part through restoration of the proliferation of neural progenitor cells in adults.


ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141989269 ◽  
Author(s):  
Anna-Lina Gerberding ◽  
Silvia Zampar ◽  
Martina Stazi ◽  
David Liebetanz ◽  
Oliver Wirths

There is growing evidence from epidemiological studies that especially midlife physical activity might exert a positive influence on the risk and progression of Alzheimer’s disease. In this study, the Tg4-42 mouse model of Alzheimer’s disease has been utilized to assess the effect of different housing conditions on structural changes in the hippocampus. Focusing on the dentate gyrus, we demonstrate that 6-month-old Tg4-42 mice have a reduced number of newborn neurons in comparison to age-matched wild-type mice. Housing these mice for 4 months with either unlimited or intermittent access to a running wheel resulted in a significant rescue of dentate gyrus neurogenesis. Although neither dentate gyrus volume nor neuron number could be modified in this Alzheimer’s disease mouse model, unrestricted access to a running wheel significantly increased dentate gyrus volume and granule cell number in wild-type mice.


Sign in / Sign up

Export Citation Format

Share Document