scholarly journals Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Sebastian GA Konietzny ◽  
Phillip B Pope ◽  
Aaron Weimann ◽  
Alice C McHardy
2014 ◽  
Author(s):  
Sebastian Gil Anthony Konietzny ◽  
Phillip Byron Pope ◽  
Aaron Weimann ◽  
Alice Carolyn McHardy

Background: Efficient industrial processes for converting plant lignocellulosic materials into biofuels are a key challenge in global efforts to use alternative energy sources to fossil fuels. Novel cellulolytic enzymes have been discovered from microbial genomes and metagenomes of microbial communities. However, the identification of relevant genes without known homologs, and elucidation of the lignocellulolytic pathways and protein complexes for different microorganisms remain a challenge. Results: We describe a new computational method for the targeted discovery of functional modules of plant biomass-degrading protein families based on their co-occurrence patterns across genomes and metagenome datasets, and the strength of association of these modules with the genomes of known degraders. From more than 6.4 million family annotations for 2884 microbial genomes and 332 taxonomic bins from 18 metagenomes, we identified five functional modules that are distinctive for plant biomass degraders, which we call plant biomass degradation modules (PDMs). These modules incorporated protein families involved in the degradation of cellulose, hemicelluloses and pectins, structural components of the cellulosome and additional families with potential functions in plant biomass degradation. The PDMs could be linked to 81 gene clusters in genomes of known lignocellulose degraders, including previously described clusters of lignocellulolytic genes. On average, 70% of the families of each PDM mapped to gene clusters in known degraders, which served as an additional confirmation of their functional relationships. The presence of a PDM in a genome or taxonomic metagenome bin allowed us to predict an organism's ability for plant biomass degradation accurately. For 15 draft genomes of a cow rumen metagenome, we validated by cross-linking with confirmed cellulolytic enzymes that the PDMs identified plant biomass degraders within a complex microbial community. Conclusions: Functional modules of protein families that realize different aspects of plant cell wall degradation can be inferred from co-occurrence patterns across (meta-)genomes with a probabilistic topic model. The PDMs represent a new resource of protein families and candidate genes implicated in microbial plant biomass degradation. They can be used to predict the ability to degrade plant biomass for a genome or taxonomic bin. The method would also be suitable for characterizing other microbial phenotypes.


2021 ◽  
Author(s):  
Connor L. Brown ◽  
James Mullet ◽  
Fadi Hindi ◽  
James E. Stoll ◽  
Suraj Gupta ◽  
...  

ABSTRACTCurrently available databases of bacterial mobile genetic elements (MGEs) contain both “core” and accessory MGE functional modules, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, limits the usability of these databases for MGE annotation. To overcome this limitation, we analysed 10,776,212 protein sequences derived from seven MGE databases to compile a comprehensive database of 6,140 manually curated protein families that are linked to the “life cycle” (integration, excision, replication/recombination/repair, transfer, and stability/defense) of all major classes of bacterial MGEs. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid, integrative element) derived from the source database, and assign a list of keywords to each entry to delineate different MGE functional modules and to facilitate annotation. The resulting database, mobileOG-db (for mobile orthologous groups), provides a simple and readily interpretable foundation for an array of MGE-centred analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can browse and design, refine, and analyse custom subsets of the dynamic mobilome.


2011 ◽  
Vol 12 (1) ◽  
pp. 141 ◽  
Author(s):  
Sebastian GA Konietzny ◽  
Laura Dietz ◽  
Alice C McHardy

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2011 ◽  
Vol 10 (8) ◽  
pp. 1053-1057
Author(s):  
Gavril Budau ◽  
Mihaela Campean ◽  
Camelia Cosereanu ◽  
Dumitru Lica

Author(s):  
Chunlei Wu ◽  
Suying Yao

Abstract As semiconductor technology continues to advance to smaller dimensions and more complex circuit designs, it is becoming more challenging to locate the resistive short directly between two metal lines (signals) due to a metal bridge defect. Especially these two metal lines are very long and relevant to many functional modules. After studying the failed circuit model, we found there should be a tiny leakage between one of the bridged signals and one of common power signals (such as VDD and GND) on a failed IC compared with the reference one, if there is a metal bridge defect between these two bridged signals. The tiny leakage between one of the bridged signals and one of power signals is an indirect leakage that is a mapping of the direct resistive short between these two bridged signals. The metal bridge defect could be pinpointed with the tiny leakage between one of the bridged signals and one of power signals by Lock-in IR-OBIRCH. It is an easier and faster way to locate the metal bridge defects. In this paper, the basic and simple circuit model with a metal bridge defect will be presented and two cases will be studied to demonstrate how to localize a metal bridge defect by the tiny leakage between one of the bridged signals and one of power signals.


2020 ◽  
Vol 65 (6) ◽  
pp. 1219-1229
Author(s):  
В.А. Четырбоцкий ◽  
◽  
А.Н. Четырбоцкий ◽  
Б.В. Левин ◽  
◽  
...  

A numerical simulation of the spatial-temporal dynamics of a multi-parameter system is developed. The components of this system are plant biomass, mobile and stationary forms of mineral nutrition elements, rhizosphere microorganisms and environmental parameters (temperature, humidity, acidity). Parametric identification and verification of the adequacy of the model were carried out based on the experimental data on the growth of spring wheat «Krasnoufimskaya-100» on peat lowland soil. The results are represented by temporal distributions of biomass from agricultural crop under study and the findings on the content of main nutrition elements within the plant (nitrogen, phosphorus, potassium). An agronomic assessment and interpretation of the obtained results are given.


Sign in / Sign up

Export Citation Format

Share Document