scholarly journals Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Jean-Desire Rakotoson ◽  
Christen M. Fornadel ◽  
Allison Belemvire ◽  
Laura C. Norris ◽  
Kristen George ◽  
...  
Author(s):  
Beekam Kebede Olkeba ◽  
Peter L. M. Goethals ◽  
Pieter Boets ◽  
Luc Duchateau ◽  
Teshome Degefa ◽  
...  

Malaria parasites are transmitted to humans by infectious female Anopheles mosquitoes. Chemical-insecticide-based mosquito control has been successful in reducing the burden of malaria. However, the emergence of insecticide resistance in malaria vectors and concerns about the effect of the chemicals on the environment, human health, and non-target organisms present a need for new or alternative vector control intervention tools. Biocontrol methods using aquatic invertebrate predators have emerged as a potential alternative and additional tool to control mosquito populations. Ecological control specifically makes use of species insights for improving the physical habitat conditions of competitors and predators of vectors. A first step towards this is to gain knowledge on the predation potential of several typically present macroinvertebrates. Hence, this study aimed at (1) examining the influence of the predation of hemipterans on the number of emerging adult mosquitoes and (2) detecting Anopheles mosquito DNA in the gut of those predators. The prey and predators were collected from a range of water bodies located in the Gilgel Gibe watershed, southwest Ethiopia. A semi-field study was carried out using mesocosms which were constructed using plastic containers mimicking the natural aquatic habitat of immature Anopheles mosquitoes. Adult mosquitoes that emerged from the mesocosms were collected using a mechanical aspirator. At the end of the experiment, predators were withdrawn from the mesocosms and identified to genus level. Polymerase Chain Reaction (PCR) was employed to identify sibling species of Anopheles gambiae s.l. and to detect Anopheles mosquito DNA in the gut of the predators. Data were analysed using R software. Giant water bugs (belostomatids) were the most aggressive predators of Anopheles larvae, followed by backswimmers (notonectids) and water boatmen (corixids). All female Anopheles gambiae s.l. emerged from the mesocosms were identified as Anopheles arabiensis. Anopheles arabiensis DNA was detected in the gut content of hemipteran specimens analysed from the three families. The number of the adult mosquitoes emerging from the mesocosms was affected by the presence of predators. The findings of this study provide evidence of the potential use of aquatic macroinvertebrate predators as biocontrol agents against immature Anopheles mosquitoes and their potential to be considered as a component of integrated vector management for insecticide resistance and the combined restoration of aquatic ecosystems via smart ecological engineering.


2020 ◽  
Author(s):  
Majidah Hamid-Adiamoh ◽  
Alfred Amambua-Ngwa ◽  
Davis Nwakanma ◽  
Umberto D’Alessandro ◽  
Gordon A. Awandare ◽  
...  

Abstract Background Selection pressure from continued exposure to insecticides drives the development of insecticide resistance and changes in resting behavior of malaria vectors, which may support residual transmission in several endemic settings. There is a need to understand how resistance drives changes in resting behavior within vector species. Here, we examined the association between insecticide resistance and resting behavior of Anopheles gambiae s.l. in Northern Ghana. Methods Adult mosquitoes were collected both indoors and outdoors from two communities using mouth aspirators and pit shelters. F1 progenies from a subset of mosquitoes were exposed to dichloro diphenyl trichloroethane (DDT), deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)- 1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases (oxidases) were measured from unexposed F1 progenies using microplate assays. Results Susceptibility of An. coluzzii to deltamethrin 24hr post-exposure was significantly higher in indoor (mortality=5%) than the outdoor (mortality=2.5%) populations (P=0.02). The mosquitoes were fully susceptible to malathion (mortality: indoor=98%, outdoor=100%). Susceptibility to DDT was significantly higher in outdoor (mortality=9%) than indoor (mortality=0%) mosquitoes (P=0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor=90%, outdoor=95%. P=0.30). The frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae s.s significantly associated with outdoor-resting behavior (P=0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor=: 1.70/mg protein; Indoor=1.35/mg protein. P<0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P=0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than the outdoor mosquito population (3%).Conclusions These findings revealed higher phenotypic resistance in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor mosquito populations. However, the overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Indication that human and animal blood meal indices were more prevalent in indoor-resting mosquitoes was also shown. Continued monitoring of changes in resting behavior within An. gambiae s.l. populations is recommended.


2020 ◽  
Author(s):  
Dieudonné D. Soma ◽  
Barnabas M. Zogo ◽  
François D. Hien ◽  
Aristide S. Hien ◽  
Didier P.A. Kaboré ◽  
...  

AbstractThe rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl, in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. We measured the susceptibility of Anopheles gambiae s.l. population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae s.l. population. An. Gambiae s.l. from Diébougou was resistant to pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR=0.792, [0.55-1.12], Tukey’s test p-value =0.19). This study showed that one round of IRS with pirimiphos-methyl CS has the potential to control the multi-resistant An. gambiae s.l. population from Southwest Burkina Faso for at least 7 months, regardless of the type of wall.


2020 ◽  
Author(s):  
Majidah Hamid-Adiamoh ◽  
Alfred Amambua-Ngwa ◽  
Davis Nwakanma ◽  
Umberto D’Alessandro ◽  
Gordon A. Awandare ◽  
...  

Abstract Background: Selection pressure from continued exposure to insecticides drives the development of insecticide resistance and changes in resting behavior of malaria vectors, which may support residual transmission in several endemic settings. There is a need to understand how resistance drives changes in resting behavior within vector species. Here, we examined the association between insecticide resistance and resting behavior of Anopheles gambiae s.l. in Northern Ghana. Methods: Adult mosquitoes were collected both indoors and outdoors from two communities using mouth aspirators and pit shelters. F1 progenies from a subset of mosquitoes were exposed to dichloro diphenyl trichloroethane (DDT), deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)- 1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases (oxidases) were measured from unexposed F1 progenies using microplate assays. Results: Susceptibility of An. coluzzii to deltamethrin 24hr post-exposure was significantly higher in indoor (mortality=5%) than the outdoor (mortality=2.5%) populations (P=0.02). The mosquitoes were fully susceptible to malathion (mortality: indoor=98%, outdoor=100%). Susceptibility to DDT was significantly higher in outdoor (mortality=9%) than indoor (mortality=0%) mosquitoes (P=0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor=90%, outdoor=95%. P=0.30). The frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae s.s significantly associated with outdoor-resting behavior (P=0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor=: 1.70/mg protein; Indoor=1.35/mg protein. P<0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P=0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than the outdoor mosquito population (3%). Conclusions: These findings revealed higher phenotypic resistance in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor mosquito populations. However, the overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Indication that human and animal blood meal indices were more prevalent in indoor-resting mosquitoes was also shown. Continued monitoring of changes in resting behavior within An. gambiae s.l. populations is recommended.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Philippe Nwane ◽  
Josiane Etang ◽  
Mouhamadou Chouaїbou ◽  
Jean Claude Toto ◽  
Alphonsine Koffi ◽  
...  

Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca Pwalia ◽  
Joannitta Joannides ◽  
Alidu Iddrisu ◽  
Charlotte Addae ◽  
Dominic Acquah-Baidoo ◽  
...  

2019 ◽  
Vol 56 (6) ◽  
pp. 1678-1683 ◽  
Author(s):  
Jeffrey G Holleman ◽  
Grant A Robison ◽  
Ian J Bellovich ◽  
Warren Booth

Abstract Despite awareness of the mutations conferring insecticide resistance in the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), within the United States few studies address the distribution and frequency of these. Within the United States, studies have focused on collections made along the East Coast and Midwest, documenting the occurrence of two mutations (V419L and L925I) within the voltage-gated sodium channel α-subunit gene shown to be associated with knockdown resistance (kdr) to pyrethroids. Here, the distribution and frequency of the V419L and L925I site variants is reported from infestations sampled within Oklahoma and its immediately adjacent states. Additionally, the presence of a mutation previously undocumented in the United States (I935F) is noted. While novel in the United States, this mutation has previously been reported in Australian and Old World populations. No infestations were found to harbor wild-type individuals, and hence susceptible, at each of the three sites. Instead, ~21% were found to possess the resistant mutation at the L925I site (haplotype B), ~77% had mutations at both the V419L and L925I sites (haplotype C), and 2% possessed the mutation at the L936F site (haplotype Ab). The high frequency of haplotype C corresponds to previous studies in the United States, and contrasts dramatically with those of the Old World and Australia. The data presented here provide insight into the contemporary occurrence of kdr-associated insecticide resistance in the South Central United States, a region for which data have previously been absent. These data suggest that New World and Old World/Australian infestations are likely to have originated from different origins.


Sign in / Sign up

Export Citation Format

Share Document