scholarly journals Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenting Gao ◽  
Xuetao Yang ◽  
Juan Du ◽  
Haiyan Wang ◽  
Hejiang Zhong ◽  
...  

Abstract Background Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. Methods The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, −/−) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). Results Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh−/− mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM). Conclusion Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Graphical abstract Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.

2007 ◽  
Vol 16 (6) ◽  
pp. 579-585 ◽  
Author(s):  
Guo-Ping Huang ◽  
Zhi-Jun Pan ◽  
Bing-Bing Jia ◽  
Qiang Zheng ◽  
Chun-Gang Xie ◽  
...  

Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45–55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S87-S88
Author(s):  
Kuzhali Muthumalaiappan ◽  
Maria Camargo Johnson ◽  
Julia Walczak ◽  
Vimal Subramaniam ◽  
Anthony J Baldea ◽  
...  

Abstract Introduction Previous burn and traumatic injury studies have established that adrenergic signaling is increased after burn injury and may lead to an impairment of hematopoietic cell development in the bone marrow (BM). Nonetheless, mesenchymal stem cells (MSCs), which have gained momentum in regenerative medicine also play a predominant role in the BM niche. Understanding the propensity of the adrenergic receptor (AR) response by MSCs can be utilized for devising targeted therapies. However, the traditional plastic adherence procedure using ex vivo culture of BM cells for several weeks may skew the actual characteristics of MSCs. Our current study focused on isolating MSCs from freshly obtained BM in a murine scald burn model with a goal to characterize the expression pattern of native AR subgroups present on BM MSCs as compared to sham mice. Methods Eight, two-month-old adult female mice were subjected to a 15% total body 3rd degree burn or sham burn. The mice were sacrificed 7 days later. Femurs were removed and total bone marrow cells were flushed out. Multi parametric flow cytometry was used to gate for cells negative for hematopoietic cell markers (CD45, CD11B) and positive for MSC markers (CD105, CD106, SSEA, Ly6A) and AR subgroups (α1, α2, β1, β2, β3). We measured the number of BM MSCs, quantified the subtypes of ARs present on MSCs, and compared the ratio of AR antibody binding per total MSC population. Results Overall the frequency of MSCs per million total BM cells decreased by 48% post-burn injury with165,300 ± 194 in sham versus 110,000 ± 30 in burn displayed as bar graph in Panel A. Over 90% of MSCs consistently express β2 AR and only 10% express α2 AR subgroup in both scald and sham burn. Presence of other subgroups ranged from 50% to 80% of MSCs as seen in histograms to the right of dotted line in Panel B. Our AR propensity score based on AR mean fluorescence intensity adjusted to total number of MSCs present was increased by 2.8-fold for α1, 2.5-fold for β1, 1.6-fold for β3, and 1.3-fold for β2 AR subgroups (Panel C). These findings indicate burn injury not only decreases the frequency of BM MSCs but also increases the affinity of certain AR subgroups present on MSCs. Since BM MSCs are the major source of cytokines, chemokines and growth factors; detailed studies on AR mediated signaling in BM MSCs is warranted. Conclusions Polarization of AR signaling in BM MSCs by burn-induced catecholamines may have broader implications for comorbidities such as bone resorption and muscle wasting observed in human patients post burn trauma.


2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


2006 ◽  
Vol 37 (4) ◽  
pp. 359-366 ◽  
Author(s):  
S N Robinson ◽  
J Ng ◽  
T Niu ◽  
H Yang ◽  
J D McMannis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document