scholarly journals Ex Vivo Expansion and Transplantation of Hematopoietic Stem/Progenitor Cells Supported by Mesenchymal Stem Cells from Human Umbilical Cord Blood

2007 ◽  
Vol 16 (6) ◽  
pp. 579-585 ◽  
Author(s):  
Guo-Ping Huang ◽  
Zhi-Jun Pan ◽  
Bing-Bing Jia ◽  
Qiang Zheng ◽  
Chun-Gang Xie ◽  
...  

Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45–55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4810-4810
Author(s):  
Olga Kulemina ◽  
Izida Minullina ◽  
Sergey Anisimov ◽  
Renata Dmitrieva ◽  
Andrey Zaritskey

Abstract Abstract 4810 Ex vivo expansion and manipulation of primitive hematopoietic cells has become a major goal in the experimental hematology, because of its potential relevance in the development of therapeutic strategies aimed at treating a diverse group of hematologic disorders. Osteoblasts, mesenchymal stem/progenitor cells (MSC/MPC), adipocytes, reticular cells, endothelial cells and other stromal cells, have been implicated in regulation of HSC maintenance in endosteal and perivascular niches. These niches facilitate the signaling networks that control the balance between self-renewal and differentiation. In the present study, we evaluated and compared the effects of three different stromal feeder layers on expansion of HSPC derived from BM and cord blood (CB): BM mesenchymal stem cells (MSC), osteoblast-differentiated BM mesenchymal stem cells (Ost-MSC) and adipocyte-differentiated BM mesenchymal stem cells (Ad-MSC). BM-MSC cultures were established from plastic adherent BM cell fractions and analyzed for immunophenotype, frequency of colony forming units (CFU-F), frequency of osteo- (CFU-Ost) and adipo- (CFU-Ad) lineage progenitors. Cultures with similar clonogenity (CFU-F: 26,4 ± 4,5%) and progenitors frequency (CFU-Ost: 14,7 ± 4,5%; CFU-Ad: 13,3 ± 4,5%) were selected for co-culture experiments. All MSC were positive for stromal cell-associated markers (CD105, CD90, CD166, CD73) and negative for hematopoietic lineage cells markers (CD34, CD19, CD14, CD45). CD34+ cells were separared from BM and CB samples by magnetic cell sorting (MACS) and analyzed for CD34, CD38 and CD45 expression. Feeder layers (MSC, Ost-MSC, Ad-MSC) were prepared in 24-well plates prior to co-culture experiments: MSCs (4×104 cells/well) were cultured for 24 h and either used for following experiments or stimulated to differentiate into either osteoblasts or adipoctes according to standard protocols. CD34+ cells (3500-10000 cells per well) were co-cultured in Stem Span media with or without a feeder layers and in the presence of cytokines (10 ng/mL Flt3-L, 10 ng/mL SCF, 10ng/mL IL-7) for 7 days. Expanded cells were analyzed for CD34, CD38 and CD45 expression. Results are shown on figures 1 and 2. As expected, CB-derived HSPC expanded much more effectively than BM-derived HSPC. The similar levels of expansion were observed for both, the total number of HSPC, and more primitive CD34+CD38- fraction in the presence of all three feeder layers. Ost-MSC supported CB-derived HSPC slightly better than MSC and Ad-MSC which is in a good agreement with data from literature (Mishima et.al., European Journal of Haematology, 2010), but difference was not statistically significant. In contrast, whereas BM-MSC feeder facilitated CD34+CD38- fraction in BM-derived HSPC, Adipocyte-differentiated MSC and osteoblast-differentiated MSC failed to support BM-derived CD34+CD38- expansion (11,4 ±.4 folds for MSC vs 0,9 ±.0,14 for Ad-MSC, n=5, p<0,01 and 0,92 ±.0,1 for Ost-MSC, n=5, p<0,01).Figure 1.Cord Blood HSPC ex vivo expansionFigure 1. Cord Blood HSPC ex vivo expansionFigure 2.Bone Marrow HSPC ex vivo expansionFigure 2. Bone Marrow HSPC ex vivo expansion Conclusion: BM- and CB-derived CD34+CD38- cells differ in their dependence of bone marrow stroma. Coctail of growth factors facilitate CB HSPC expansion irrespective of lineage differentiation of supporting MSC feeder layer. In contrast, primitive BM CD34+CD38- HSPC were able to expand only on not differentiated MSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4253-4253
Author(s):  
Shmuel Yaccoby ◽  
Kenichiro Yata ◽  
Yun Ge ◽  
Bart Barlogie ◽  
Joshua Epstein ◽  
...  

Abstract Recent studies indicate that osteoblasts play an important role in maintaining hematopoietic stem cells (HSCs) niche in the bone marrow microenvironment. The aim of study was to test the effect of osteoclasts on the fate of HSCs in a long term co-culture assay. To generate osteoclasts, peripheral blood mononuclear cells from mobilized donors were cultured for 6–10 days in αMEM media supplemented with 10% FCS, M-CSF and RANKL. After removal of non-adherent cells, the cultures contained 95% multinucleated osteoclasts and their precursors. These osteoclasts expressed TRAP and formed resorption pits on bone slices (Yaccoby et al., Cancer Res., 2004). CD34+ cells were purified from donor PBSCs and cord blood using immunomagnetic beads separation (&gt;95% purity). Adult and cord blood HSCs were co-cultured with osteoclasts for up to 3 and 10 months, respectively, in media lacking any cytokines. Because osteoclasts do not survive long without M-CSF and RANKL, the HSCs were transferred to fresh osteoclast cultures every 6–10 days. Unlike their tight adherence to stromal cells, HSCs did not adhere to the osteoclasts and were easily recovered from co-cultures by gentle pipetting. Following 1 to 3 weeks of co-culture, committed HSCs rapidly differentiated into various hematopoietic cell lineage, followed by phagocytosis of terminal differentiated hematopoietic cells by the osteoclasts. The remaining HSCs were highly viable (&gt;90% by trypan blue exclusion) and gradually lost their CD34 expression, so that the cultures contained subpopulations of HSCs expressing CD34−/lowCD38+ and CD34−/lowCD38−. Quantitive real time RT-PCR (qRT-PCR) revealed loss of expression of CD34 and reduced expression of CD45 by HSCs co-cultured with osteoclasts longer than 6 weeks. Variable expression of CD34 on HSCs was previously reported in murine but not human HSCs (Tajima et al., Blood, 2001). The co-cultured HSCs showed reduced capacity of generating in vitro hematopoietic colonies, and did not differentiate into osteoclasts upon stimulation with M-CSF and RANKL. We next tested the long term engraftment of these co-cultured HSCs in 2 animal models. In the first model, cord blood and adult HSCs from 2 donors recovered after &gt;6 weeks in co-culture were injected I.V. into irradiated NOD/SCID mice. In the second novel model, co-cultured cord blood and adult HSCs from 2 donors were injected directly into rabbit bones implanted subcutaneously in SCID mice (SCID-rab model), 6–8 weeks after rabbit bone implantation. After 2–4 months, 10%±3% human CD45-expressing cells were identified in the NOD/SCID mice femora and 8%±4% in the SCID-rab mice rabbit bone. Our study suggests that osteoclasts promote rapid differentiation of committed HSCs and induce conversion of CD34+ cells to CD34− stem cells with self renewal potential. Intriguingly, long term co-culture of primary CD138-selected myeloma plasma cells (n=16) with osteoclasts resulted in dedifferentiation of tumor cells from a mature CD45− phenotype to an immature, CD45-expressing cells, suggesting a common mechanism of osteoclast-induced HSC and myeloma cell plasticity. This indicates that osteoclasts are important bone marrow component regulating human HSC niche, plasticity and fate.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3650-3650
Author(s):  
Kent W. Christopherson ◽  
Tiki Bakhshi ◽  
Shamanique Bodie ◽  
Shannon Kidd ◽  
Ryan Zabriskie ◽  
...  

Abstract Hematopoietic Stem Cells (HSC) are routinely obtained from bone marrow, mobilized peripheral blood, and umbilical Cord Blood. Traditionally, adult bone marrow has been utilized as a source of Mesenchymal Stem Cells (MSC). Bone marrow derived MSC (BM-MSC) have previously been shown to maintain the growth of HSC obtained from cord blood and have been utilized for cord blood expansion purposes. However, the use of a mismatched BM-MSC feeder stromal layer to support the long term culture of cord blood HSC is not ideal for transplant purposes. The isolation of MSC from a novel source, the Wharton’s Jelly of Umbilical Cord segments, was recently reported (Romanov Y, et al. Stem Cells.2003; 21: 105–110) (Lee O, et al. Blood.2004; 103: 1669–1675). We therefore hypothesized that Umbilical Cord derived MSC (UC-MSC) have the ability to support the long term growth of cord blood derived HSC similar to that previously reported for BM-MSC. To test this hypothesis, MSC were isolated from the Wharton’s Jelly of Umbilical Cord segments and defined morphologically and by cell surface markers. UC-MSC were then tested for their ability to support the growth of pooled CD34+ cord blood cells in long term culture - initiating cell (LTC-IC) assays as compared to BM-MSC. We observed that like BM-MSC, CB-MSC express a defined set of cell surface markers. By flow cytometry we determined that that both UC-MSC and BM-MSC are positive for CD29, CD44, CD73, CD90, CD105, CD166, HLA-A and negative for CD45, CD34, CD38, CD117, HLA-DR expression. Utilizing Mitomycin C treated (200 μM, 15 min.) UC-MSC from multiple donors as a feeder layer we observed that UC-MSC have the ability to support the maintenance of long term hematopoiesis during the LTC-IC assay. Specifically, UC-MSC isolated from separate umbilical cord donors support the growth of 69.6±11.9 (1A), 31.7±3.9 (2B), 67.0±13.5 (3A), and 38.5±13.7 (3B) colony forming cells (CFC) per 1×104 CD34+ cord blood cells as compared to 64.0±4.2 CFC per 1×104 CD34+ cord blood cells supported by BM-MSC (Mean±SEM, N=4 separate segments from three different donors). Thus, Umbilical Cord derived Mesenchymal Stem Cells, a recently described novel source of MSC, have the ability to support long term maintenance of Hematopoietic Stem Cells, as defined by the LTC-IC assay. These results may have potential therapeutic application with respect to ex vivo stem cell expansion of Cord Blood Hematopoietic Stem Cells utilizing a Mesenchymal Stem Cell stromal layer. In addition, these data suggest the possibility of co-transplantation of matched Mesenchymal and Hematopoietic Stem Cells from the same umbilical cord and cord blood donor respectively. Lastly, these results describe a novel model system for the future study of the interaction between Cord Blood Hematopoietic Stem Cells and the appropriate supportive microenvironment represented by the Umbilical Cord - Mesenchymal Stem Cells.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Mo A. Dao ◽  
Jesusa Arevalo ◽  
Jan A. Nolta

Abstract The cell surface protein CD34 is frequently used as a marker for positive selection of human hematopoietic stem/progenitor cells in research and in transplantation. However, populations of reconstituting human and murine stem cells that lack cell surface CD34 protein have been identified. In the current studies, we demonstrate that CD34 expression is reversible on human hematopoietic stem/progenitor cells. We identified and functionally characterized a population of human CD45+/CD34− cells that was recovered from the bone marrow of immunodeficient beige/nude/xid (bnx) mice 8 to 12 months after transplantation of highly purified human bone marrow–derived CD34+/CD38− stem/progenitor cells. The human CD45+ cells were devoid of CD34 protein and mRNA when isolated from the mice. However, significantly higher numbers of human colony-forming units and long-term culture-initiating cells per engrafted human CD45+ cell were recovered from the marrow of bnx mice than from the marrow of human stem cell–engrafted nonobese diabetic/severe combined immunodeficient mice, where 24% of the human graft maintained CD34 expression. In addition to their capacity for extensive in vitro generative capacity, the human CD45+/CD34− cells recovered from thebnx bone marrow were determined to have secondary reconstitution capacity and to produce CD34+ progeny following retransplantation. These studies demonstrate that the human CD34+ population can act as a reservoir for generation of CD34− cells. In the current studies we demonstrate that human CD34+/CD38− cells can generate CD45+/CD34− progeny in a long-term xenograft model and that those CD45+/CD34− cells can regenerate CD34+ progeny following secondary transplantation. Therefore, expression of CD34 can be reversible on reconstituting human hematopoietic stem cells.


2021 ◽  
Vol 5 (17) ◽  
pp. 3362-3372
Author(s):  
Yinghui Li ◽  
Wenshan Zhang ◽  
Yu Zhang ◽  
Yahui Ding ◽  
Ming Yang ◽  
...  

Abstract The use of umbilical cord blood transplant has been substantially limited by the finite number of hematopoietic stem and progenitor cells in a single umbilical cord blood unit. Small molecules that not only quantitatively but also qualitatively stimulate enhancement of hematopoietic stem cell (HSC) self-renewal ex vivo should facilitate the clinical use of HSC transplantation and gene therapy. Recent evidence has suggested that the cyclin-dependent kinase inhibitor, p18INK4C (p18), is a critical regulator of mice HSC self-renewal. The role of p18 in human HSCs and the effect of p18 inhibitor on human HSC expansion ex vivo need further studies. Here we report that knockdown of p18 allowed for an increase in long-term colony-forming cells in vitro. We then identified an optimized small molecule inhibitor of p18, 005A, to induce ex vivo expansion of HSCs that was capable of reconstituting human hematopoiesis for at least 4 months in immunocompromised mice, and hence, similarly reconstituted secondary recipients for at least 4 more months, indicating that cells exposed to 005A were still competent in secondary recipients. Mechanistic studies showed that 005A might delay cell division and activate both the Notch signaling pathway and expression of transcription factor HoxB4, leading to enhancement of the self-renewal of long-term engrafting HSCs and the pool of progenitor cells. Taken together, these observations support a role for p18 in human HSC maintenance and that the p18 inhibitor 005A can enhance the self-renewal of long-term HSCs.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4868-4868
Author(s):  
Kohshi Ohishi ◽  
Kentaro Yamamura ◽  
Masahiro Masuya ◽  
Naoyuki Katayama

Abstract Intra-bone marrow transplantation (IBMT) is a novel strategy for transplantation of hematopoietic stem cells because it can transfer various types of cells to bone marrow regardless of their homing capacity. However, reconstitution process of these cells after IBMT remains to be fully elucidated. Here, we investigated whether in vitro culture of cord blood hematopoietic stem/progenitor cells affects their reconstitution in bone marrow after IBMT. Freshly isolated AC133+ cells (5x104 cells/mouse) or all cells derived from AC133+ cells cultured with growth factors (stem cell factor, flt-3 ligand, and thrombopoietin) for 5 days were injected into the bone marrow of the left tibia in irradiated NOD/SCID mice. In the bone marrow of the injected left tibia, the engraftment levels of human CD45+ cells at 6 weeks after transplantation was not considerably different between transplantation of noncultured and cytokine-cultured cells (54±28% vs. 69±13%). However, the migration of transplanted cells to the bone marrow of other noninjected bones was extremely lower for cytokine-treated cells compared with noncultured cells (2±2% vs. 36±10%). Similar findings were observed for engraftment of CD34+ cells. To enhance the migration of cytokine-cultured cells after IBMT, we similarly transplanted cultured AC133+ cells into the bone marrow of the left tibia, assessed the engraftment in the injected and noninjected tibiae at 7 days after transplantation, and then subcutaneously administered G-CSF (250 μg/kg/d) for 5 days. Administration of G-CSF stimulated the migration of cytokine-cultured cells to the bone marrow of previously-aspirated right tibia but failed to induce their migration to intact bone marrow of femur. These data indicate that ex vivo manipulation of hematopoietic progenitor/stem cells adversely influences their migration properties to other bone marrow compartments after IBMT. Our data raise caution for future clinical applications of the IBMT method using ex vivo-manipulated hematopoietic stem cells.


Sign in / Sign up

Export Citation Format

Share Document