scholarly journals Robust localization in wireless networks from corrupted signals

Author(s):  
Muhammad Osama ◽  
Dave Zachariah ◽  
Satyam Dwivedi ◽  
Petre Stoica

AbstractWe address the problem of timing-based localization in wireless networks, when an unknown fraction of data is corrupted by non-ideal propagation conditions. While timing-based techniques can enable accurate localization, they are sensitive to corrupted data. We develop a robust method that is applicable to a range of localization techniques, including time-of-arrival, time-difference-of-arrival and time-difference in schedule-based transmissions. The method is distribution-free, is computationally efficient and requires only an upper bound on the fraction of corrupted data, thus obviating distributional assumptions on the corrupting noise. The robustness of the method is demonstrated in numerical experiments.

2009 ◽  
Vol 1 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Mauro Leonardi ◽  
Adolf Mathias ◽  
Gaspare Galati

Two localization algorithms for multilateration systems are derived and analyzed. Instead of the classical time difference of arrival (TDOA), a direct use of the time of arrival (TOA) is made. The algorithms work for arbitrary spatial dimensions and overdetermined systems. These derivations are tested in a real-case implementation with simulated data (in particular, the multilateration (MLAT) system installed on the Malpensa Airport in Milan was considered for the MLAT simulation and its possible extension to wide area multilateration (WAM) system was considered for WAM trials). The results are also compared with the present-day algorithms performance, mostly based on TDOA.


Author(s):  
Andrey Dudnik

Актуальність теми дослідження. Нині безпровідні сенсорні мережі є важливим інструментом для дослідження фізичного світу. Їхня важливість пов’язана з новими можливостями використання, завдяки таким характеристикам, як відсутність необхідності в кабельній інфраструктурі, мініатюрних вузлах, низькому енергоспоживанні, вбудованому радіоінтерфейсі, досить високій потужності передачі, відносно низькій вартості. Тому існує проблема створення нових засобів, що покращили б ефективність їх використання, що б дало змогу розширити сфери застосування. Постановка проблеми. У процесі розроблення таких систем розробникам доводиться вирішувати суперечність між зниження точності вимірювання відстані, зі зростанням дальності розташування об’єктів, обмеженою потужністю передавачів і дорогою вартістю спеціальних вузлів, що отримують точні координати із супутника. Наявність цих обмежень підвищує імовірність похибок при локалізації об’єктів у безпровідних сенсорних мережах. Аналіз останніх досліджень і публікацій. Були розглянуті останні публікації у відкритому доступі, включаючи існуючі алгоритми вимірювання відстані та задачі енергоефективності передавачів. Виділення недосліджених раніше частин загальної проблеми. Підвищення точності вимірювання відстані заобів, що використовують існуючі алгоритми вимірювання відстані. Постановка завдання. Удосконалення методу вимірювання відстані пристроями безпровідних сенсорних мереж, шляхом застосування мікропроцесорних фазометрів. Виклад основного матеріалу. Локалізація об’єктів відбувається за допомогою методу TDOA (Time Difference of Arrival). Дані, що були одержані після використання цього методу, надсилаються до мікропроцесорного фазометра, який визначає період між фазами радіо- та ультразвукового сигналу, що є пропорційною величиною до відстані між об’єктами. Висновки відповідно до статті. Запропонований метод дозволяє покращити точність процесу локалізації об’єктів у безпровідних сенсорних мережах.


Author(s):  
Bruce D. Hockaday

Detection of airfoil time of arrival with optical probes has been evolving since the 1980s. Time of arrival data are used to infer airfoil stresses caused by vibration through a sequence of manipulations. The data conversion begins by converting arrival time to blade position, so blade deflection can be determined from the expected non-vibrating position. Various methods are used in the industry to convert deflection data to frequency, amplitude, and stress, which is beyond the scope of this paper. Regardless of the analytical approach used, producing accurate stress information relies on the precise detection and measurement of time of arrival, which equates to blade position. Recent improvements have been made in time of arrival system accuracy by running faster clocks to increase temporal resolution of the measurement. Greater timing resolution, afforded by clock speed, will have diminishing returns when probe and blade-tip interactions begin producing dominant errors. In the case of optical probes, the blade-tip needs to be treated as a curved reflector in the optical system that is capable of introducing dynamic errors. In engine operation the blade-tip moves axially under the probe from untwist, static deflection, and vibration, causing the light to reflect from different parts of the blade-tip. This relative movement between the probe and blade-tip cause the arrival time to change dynamically. Neglecting the dynamic arrival errors caused by the blade-tip’s optical properties will result in blade deflection-errors that propagate into the stress information. This paper presents a laboratory study that quantifies time of arrival errors due to optical interaction with tip radii. The study reports measured arrival position error as a function of location and optical signal power levels. The work is presented in terms of arrival position, producing information that is independent of rotational speed, and vibratory mode.


Sign in / Sign up

Export Citation Format

Share Document