scholarly journals A hybrid approach to inferring the Internet of Things for complex activity recognition

Author(s):  
Qingjuan Li ◽  
Huansheng Ning ◽  
Tao Zhu ◽  
Shan Cui ◽  
Liming Chen

AbstractWith the rapid development and large-scale uptake of the Internet of Things, smart home is evolving from a vision towards a realistically viable solution for assisted living. Activity recognition is one of the fundamental tasks in order to provide accurate and timely assistance and service. As daily living scenarios are full of similar activities, missing data, and noise, inferring complex activities using knowledge-driven reasoning algorithms suffers from several drawbacks, e.g., real-time raw sensor data segmentation, poor generalization, higher computational complexity, and scalability. To address these problems, this paper proposes a hybrid approach to complex daily activity recognition by merging the first-order logic and probability graphic modeling. Specifically, we develop a novel “Markov logic network” combining data-driven multi-feature and simplified rule-based modeling and inference, thus enabling and supporting the applicability and robustness of daily activity recognition. To evaluate the approach and associated methods, we design a testing scenario with a number of similar activity groups, missing data, or disturbance test datasets in a multi-modeling sensor scene. Initial results show our approach outperforms the traditional approach with a better accuracy in the situations of similar activities with missing data and noise disturbance. Experiments are also conducted to compare the Gibbs sampling and MC-SAT sampling algorithms for Markov logic network, and the results show that the Gibbs is better in our experimental settings.

Author(s):  
Pranjal Kumar

The growing use of sensor tools and the Internet of Things requires sensors to understand the applications. There are major difficulties in realistic situations, though, that can impact the efficiency of the recognition system. Recently, as the utility of deep learning in many fields has been shown, various deep approaches were researched to tackle the challenges of detection and recognition. We present in this review a sample of specialized deep learning approaches for the identification of sensor-based human behaviour. Next, we present the multi-modal sensory data and include information for the public databases which can be used in different challenge tasks for study. A new taxonomy is then suggested, to organize deep approaches according to challenges. Deep problems and approaches connected to problems are summarized and evaluated to provide an analysis of the ongoing advancement in science. By the conclusion of this research, we are answering unanswered issues and providing perspectives into the future.


2020 ◽  
Vol 25 (6) ◽  
pp. 737-745
Author(s):  
Subba Rao Peram ◽  
Premamayudu Bulla

To provide secure and reliable services using the internet of things (IoT) in the smart cities/villages is a challenging and complex issue. A high throughput and resilient services are required to process vast data generated by the smart city/villages that felicitates to run the applications of smart city. To provide security and privacy a scalable blockchain (BC) mechanism is a necessity to integrate the scalable ledger and transactions limit in the BC. In this paper, we investigated the available solutions to improve its scalability and efficiency. However, most of the algorithms are not providing the better solution to achieve scalability for the smart city data. Here, proposed and implemented a hybrid approach to improve the scalability and rate of transactions on BC using practical Byzantine fault tolerance and decentralized public key algorithms. The proposed Normachain is compares our results with the existing model. The results show that the transaction rate got improved by 6.43% and supervision results got improved by 17.78%.


2014 ◽  
Vol 19 (2) ◽  
pp. 271-285 ◽  
Author(s):  
K. S. Gayathri ◽  
Susan Elias ◽  
Balaraman Ravindran

Sign in / Sign up

Export Citation Format

Share Document