scholarly journals Refinement of matching costs for stereo disparities using recurrent neural networks

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Alper Emlek ◽  
Murat Peker

AbstractDepth is essential information for autonomous robotics applications that need environmental depth values. The depth could be acquired by finding the matching pixels between stereo image pairs. Depth information is an inference from a matching cost volume that is composed of the distances between the possible pixel points on the pre-aligned horizontal axis of stereo images. Most approaches use matching costs to identify matches between stereo images and obtain depth information. Recently, researchers have been using convolutional neural network-based solutions to handle this matching problem. In this paper, a novel method has been proposed for the refinement of matching costs by using recurrent neural networks. Our motivation is to enhance the depth values obtained from matching costs. For this purpose, to attain an enhanced disparity map by utilizing the sequential information of matching costs in the horizontal space, recurrent neural networks are used. Exploiting this sequential information, we aimed to determine the position of the correct matching point by using recurrent neural networks, as in the case of speech processing problems. We used existing stereo algorithms to obtain the initial matching costs and then improved the results by utilizing recurrent neural networks. The results are evaluated on the KITTI 2012 and KITTI 2015 datasets. The results show that the matching cost three-pixel error is decreased by an average of 14.5% in both datasets.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Viral H. Borisagar ◽  
Mukesh A. Zaveri

A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Author(s):  
Faisal Ladhak ◽  
Ankur Gandhe ◽  
Markus Dreyer ◽  
Lambert Mathias ◽  
Ariya Rastrow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document