scholarly journals Compound Poisson point processes, concentration and oracle inequalities

Author(s):  
Huiming Zhang ◽  
Xiaoxu Wu

AbstractThis note aims at presenting several new theoretical results for the compound Poisson point process, which follows the work of Zhang et al. (Insur. Math. Econ. 59:325–336, 2014). The first part provides a new characterization for a discrete compound Poisson point process (proposed by Aczél (Acta Math. Hung. 3(3):219–224, 1952)), it extends the characterization of the Poisson point process given by Copeland and Regan (Ann. Math. 37:357–362, 1936). Next, we derive some concentration inequalities for discrete compound Poisson point process (negative binomial random variable with unknown dispersion is a significant example). These concentration inequalities are potentially useful in count data regression. We give an application in the weighted Lasso penalized negative binomial regressions whose KKT conditions of penalized likelihood hold with high probability and then we derive non-asymptotic oracle inequalities for a weighted Lasso estimator.

1997 ◽  
Vol 34 (03) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k } are the points of a renewal process and {Ak } are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


1980 ◽  
Vol 17 (04) ◽  
pp. 987-995 ◽  
Author(s):  
Valerie Isham

A point process, N, on the real line, is thinned using a k -dependent Markov sequence of binary variables, and is rescaled. Second-order properties of the thinned process are described when k = 1. For general k, convergence to a compound Poisson process is demonstrated.


2011 ◽  
Vol 43 (03) ◽  
pp. 616-635
Author(s):  
Amites Dasgupta ◽  
Rahul Roy ◽  
Anish Sarkar

Consider the region L = {(x, y): 0 ≤ y ≤ Clog(1 + x), x > 0} for a constant C > 0. We study the percolation and coverage properties of this region. For the coverage properties, we place a Poisson point process of intensity λ on the entire half space R + x R and associated with each Poisson point we place a box of a random side length ρ. Depending on the tail behaviour of the random variable ρ we exhibit a phase transition in the intensity for the eventual coverage of the region L. For the percolation properties, we place a Poisson point process of intensity λ on the region R 2. At each point of the process we centre a box of a random side length ρ. In the case ρ ≤ R for some fixed R > 0 we study the critical intensity λc of the percolation on L.


1997 ◽  
Vol 34 (3) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k} are the points of a renewal process and {Ak} are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


1980 ◽  
Vol 17 (4) ◽  
pp. 987-995 ◽  
Author(s):  
Valerie Isham

A point process, N, on the real line, is thinned using a k -dependent Markov sequence of binary variables, and is rescaled. Second-order properties of the thinned process are described when k = 1. For general k, convergence to a compound Poisson process is demonstrated.


2010 ◽  
Vol 42 (3) ◽  
pp. 620-630
Author(s):  
Y. Davydov ◽  
A. Nagaev ◽  
A. Philippe

In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.


1998 ◽  
Vol 35 (3) ◽  
pp. 589-599
Author(s):  
William L. Cooper

Given a sequence of random variables (rewards), the Haviv–Puterman differential equation relates the expected infinite-horizon λ-discounted reward and the expected total reward up to a random time that is determined by an independent negative binomial random variable with parameters 2 and λ. This paper provides an interpretation of this proven, but previously unexplained, result. Furthermore, the interpretation is formalized into a new proof, which then yields new results for the general case where the rewards are accumulated up to a time determined by an independent negative binomial random variable with parameters k and λ.


1977 ◽  
Vol 14 (4) ◽  
pp. 732-739 ◽  
Author(s):  
Bruce M. Brown ◽  
Sidney I. Resnick

The maxima of independent Weiner processes spatially normalized with time scales compressed is considered and it is shown that a weak limit process exists. This limit process is stationary, and its one-dimensional distributions are of standard extreme-value type. The method of proof involves showing convergence of related point processes to a limit Poisson point process. The method is extended to handle the maxima of independent Ornstein–Uhlenbeck processes.


2012 ◽  
Vol 49 (1) ◽  
pp. 226-244
Author(s):  
Zakhar Kabluchko

We consider a system of independent branching random walks on R which start from a Poisson point process with intensity of the form eλ(du) = e-λudu, where λ ∈ R is chosen in such a way that the overall intensity of particles is preserved. Denote by χ the cluster distribution, and let φ be the log-Laplace transform of the intensity of χ. If λφ'(λ) > 0, we show that the system is persistent, meaning that the point process formed by the particles in the nth generation converges as n → ∞ to a non-trivial point process Πeλχ with intensity eλ. If λφ'(λ) < 0 then the branching population suffers local extinction, meaning that the limiting point process is empty. We characterize point processes on R which are cluster invariant with respect to the cluster distribution χ as mixtures of the point processes Πceλχ over c > 0 and λ ∈ Kst, where Kst = {λ ∈ R: φ(λ) = 0, λφ'(λ) > 0}.


Sign in / Sign up

Export Citation Format

Share Document