Extremes for shot noise processes with heavy tailed amplitudes

1997 ◽  
Vol 34 (3) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k} are the points of a renewal process and {Ak} are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.

1997 ◽  
Vol 34 (03) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k } are the points of a renewal process and {Ak } are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


2013 ◽  
Vol 45 (4) ◽  
pp. 895-916 ◽  
Author(s):  
François Baccelli ◽  
David Coupier ◽  
Viet Chi Tran

We study semi-infinite paths of the radial spanning tree (RST) of a Poisson point process in the plane. We first show that the expectation of the number of intersection points between semi-infinite paths and the sphere with radius r grows sublinearly with r. Then we prove that in each (deterministic) direction there exists, with probability 1, a unique semi-infinite path, framed by an infinite number of other semi-infinite paths of close asymptotic directions. The set of (random) directions in which there is more than one semi-infinite path is dense in [0, 2π). It corresponds to possible asymptotic directions of competition interfaces. We show that the RST can be decomposed into at most five infinite subtrees directly connected to the root. The interfaces separating these subtrees are studied and simulations are provided.


1994 ◽  
Vol 7 (3) ◽  
pp. 457-464 ◽  
Author(s):  
Jewgeni H. Dshalalow

This paper analyzes the behavior of a point process marked by a two-dimensional renewal process with dependent components about some fixed (two-dimensional) level. The compound process evolves until one of its marks hits (i.e. reaches or exceeds) its associated level for the first time. The author targets a joint transformation of the first excess level, first passage time, and the index of the point process which labels the first passage time. The cases when both marks are either discrete or continuous or mixed are treated. For each of them, an explicit and compact formula is derived. Various applications to stochastic models are discussed.


1991 ◽  
Vol 43 (8) ◽  
pp. 4192-4215 ◽  
Author(s):  
Steven B. Lowen ◽  
Malvin C. Teich

2010 ◽  
Vol 42 (3) ◽  
pp. 620-630
Author(s):  
Y. Davydov ◽  
A. Nagaev ◽  
A. Philippe

In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.


1991 ◽  
Vol 28 (03) ◽  
pp. 568-583
Author(s):  
Friedrich Liese ◽  
Volker Schmidt

Stochastic processes {X(t)} of the form X(t) = Σ n f(t – Tn ) are considered, where {Tn } is a stationary Poisson point process with intensity λ and f: R → R is an unknown response function. Conditions are obtained for weak consistency and asymptotic normality of estimators of λ based on long-run observations of {X(t)}.


1977 ◽  
Vol 14 (4) ◽  
pp. 732-739 ◽  
Author(s):  
Bruce M. Brown ◽  
Sidney I. Resnick

The maxima of independent Weiner processes spatially normalized with time scales compressed is considered and it is shown that a weak limit process exists. This limit process is stationary, and its one-dimensional distributions are of standard extreme-value type. The method of proof involves showing convergence of related point processes to a limit Poisson point process. The method is extended to handle the maxima of independent Ornstein–Uhlenbeck processes.


2012 ◽  
Vol 49 (1) ◽  
pp. 226-244
Author(s):  
Zakhar Kabluchko

We consider a system of independent branching random walks on R which start from a Poisson point process with intensity of the form eλ(du) = e-λudu, where λ ∈ R is chosen in such a way that the overall intensity of particles is preserved. Denote by χ the cluster distribution, and let φ be the log-Laplace transform of the intensity of χ. If λφ'(λ) > 0, we show that the system is persistent, meaning that the point process formed by the particles in the nth generation converges as n → ∞ to a non-trivial point process Πeλχ with intensity eλ. If λφ'(λ) < 0 then the branching population suffers local extinction, meaning that the limiting point process is empty. We characterize point processes on R which are cluster invariant with respect to the cluster distribution χ as mixtures of the point processes Πceλχ over c > 0 and λ ∈ Kst, where Kst = {λ ∈ R: φ(λ) = 0, λφ'(λ) > 0}.


Sign in / Sign up

Export Citation Format

Share Document