scholarly journals Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain

Author(s):  
Qi Li ◽  
Zi-yu Zhu ◽  
Jian Lu ◽  
Yu-Chieh Chao ◽  
Xiao-xin Zhou ◽  
...  

AbstractPerioperative sleep disturbance is a risk factor for persistent pain after surgery. Clinical studies have shown that patients with insufficient sleep before and after surgery experience more intense and long-lasting postoperative pain. We hypothesize that sleep deprivation alters L-type calcium channels in the dorsal root ganglia (DRG), thus delaying the recovery from post-surgical pain. To verify this hypothesis, and to identify new predictors and therapeutic targets for persistent postoperative pain, we first established a model of postsurgical pain with perioperative sleep deprivation (SD) by administering hind paw plantar incision to sleep deprivation rats. Then we conducted behavioral tests, including tests with von Frey filaments and a laser heat test, to verify sensory pain, measured the expression of L-type calcium channels using western blotting and immunofluorescence of dorsal root ganglia (an important neural target for peripheral nociception), and examined the activity of L-type calcium channels and neuron excitability using electrophysiological measurements. We validated the findings by performing intraperitoneal injections of calcium channel blockers and microinjections of dorsal root ganglion cells with adeno-associated virus. We found that short-term sleep deprivation before and after surgery increased expression and activity of L-type calcium channels in the lumbar dorsal root ganglia, and delayed recovery from postsurgical pain. Blocking these channels reduced impact of sleep deprivation. We conclude that the increased expression and activity of L-type calcium channels is associated with the sleep deprivation-mediated prolongation of postoperative pain. L-type calcium channels are thus a potential target for management of postoperative pain.

1997 ◽  
Vol 762 (1-2) ◽  
pp. 235-239 ◽  
Author(s):  
Chao-Sheng Huang ◽  
Jin-Ho Song ◽  
Keiichi Nagata ◽  
Dennis Twombly ◽  
Jay Z Yeh ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingling Zhu ◽  
Yanxiu Wang ◽  
Xiaowen Lin ◽  
Xu Zhao ◽  
Zhi jian Fu

The effects of ozone on hippocampal expression levels of brain-derived neurotrophic factor (BDNF) and c-fos protein (Fos) were evaluated in rats with chronic compression of dorsal root ganglia (CCD). Forty-eight adult female Sprague-Dawley rats were randomly divided into the following 4 groups ( n = 12 ): sham operation (sham group), CCD group, CCD with 20 μg/ml of ozone ( CCD + A O 3 group), and CCD with 40 μg/ml of ozone ( CCD + B O 3 group). Except the sham group, unilateral L5 dorsal root ganglion (DRG) compression was performed on all other groups. On days 1, 2, and 4 after the operation, the CCD + A O 3 and CCD + B O 3 groups were injected with 100 μl of ozone with concentrations of 20 and 40 μg/ml, respectively. Thermal withdrawal latencies (TWLs) and mechanical withdrawal thresholds (MWTs) were measured at various time points before and after the operation. BDNF and Fos expressions were examined in the extracted hippocampi using immunohistochemistry. The TWLs and MWTs of CCD model rats that received ozone were lower with decreased BDNF and increased Fos expression levels, on day 21 after the operation, compared to those of the sham group ( P < 0.05 ). The TWLs and MWTs of the CCD + A O 3 and CCD + B O 3 groups were higher with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD group ( P < 0.05 ). The TWLs were longer and the MWTs were higher in the CCD + B O 3 group at each time point with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD + A O 3 group ( P < 0.05 ). Our results revealed that ozone can relieve the neuropathic pain caused by the pathological neuralgia resulting from DRG compression in rats. The mechanism of action for ozone is likely associated with changes in BDNF and Fos expression levels in the hippocampus.


2012 ◽  
Vol 120 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Kazuyoshi Kawakami ◽  
Terumasa Chiba ◽  
Nobuyuki Katagiri ◽  
Maya Saduka ◽  
Kenji Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document