Rat dorsal root ganglia express distinctive forms of the α2 calcium channel subunit

Neuroreport ◽  
2000 ◽  
Vol 11 (16) ◽  
pp. 3449-3452 ◽  
Author(s):  
Z David Luo
Pharmacology ◽  
2010 ◽  
Vol 85 (5) ◽  
pp. 295-300 ◽  
Author(s):  
Xian-Jie Wen ◽  
Shi-Yuan Xu ◽  
Zhi-Xin Chen ◽  
Cheng-Xiang Yang ◽  
Hua Liang ◽  
...  

Author(s):  
Qi Li ◽  
Zi-yu Zhu ◽  
Jian Lu ◽  
Yu-Chieh Chao ◽  
Xiao-xin Zhou ◽  
...  

AbstractPerioperative sleep disturbance is a risk factor for persistent pain after surgery. Clinical studies have shown that patients with insufficient sleep before and after surgery experience more intense and long-lasting postoperative pain. We hypothesize that sleep deprivation alters L-type calcium channels in the dorsal root ganglia (DRG), thus delaying the recovery from post-surgical pain. To verify this hypothesis, and to identify new predictors and therapeutic targets for persistent postoperative pain, we first established a model of postsurgical pain with perioperative sleep deprivation (SD) by administering hind paw plantar incision to sleep deprivation rats. Then we conducted behavioral tests, including tests with von Frey filaments and a laser heat test, to verify sensory pain, measured the expression of L-type calcium channels using western blotting and immunofluorescence of dorsal root ganglia (an important neural target for peripheral nociception), and examined the activity of L-type calcium channels and neuron excitability using electrophysiological measurements. We validated the findings by performing intraperitoneal injections of calcium channel blockers and microinjections of dorsal root ganglion cells with adeno-associated virus. We found that short-term sleep deprivation before and after surgery increased expression and activity of L-type calcium channels in the lumbar dorsal root ganglia, and delayed recovery from postsurgical pain. Blocking these channels reduced impact of sleep deprivation. We conclude that the increased expression and activity of L-type calcium channels is associated with the sleep deprivation-mediated prolongation of postoperative pain. L-type calcium channels are thus a potential target for management of postoperative pain.


Author(s):  
V.J. Montpetit ◽  
S. Dancea ◽  
L. Tryphonas ◽  
D.F. Clapin

Very large doses of pyridoxine (vitamin B6) are neurotoxic in humans, selectively affecting the peripheral sensory nerves. We have undertaken a study of the morphological and biochemical aspects of pyridoxine neurotoxicity in an animal model system. Early morphological changes in dorsal root ganglia (DRG) associated with pyridoxine megadoses include proliferation of neurofilaments, ribosomes, rough endoplasmic reticulum, and Golgi complexes. We present in this report evidence of the formation of unique aggregates of microtubules and membranes in the proximal processes of DRG which are induced by high levels of pyridoxine.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 55.2-56
Author(s):  
R. Raoof ◽  
C. Martin ◽  
H. De Visser ◽  
J. Prado ◽  
S. Versteeg ◽  
...  

Background:Pain is a major debilitating symptom of knee osteoarthritis (OA). However, the extent of joint damage in OA does not correlate well with the severity of pain. The mechanisms that govern OA pain are poorly understood. Immune cells infiltrating nervous tissue may contribute to pain maintenance.Objectives:Here we investigated the role of macrophages in the initiation and maintenance of OA pain.Methods:Knee joint damage was induced by an unilateral injection of mono-iodoacetate (MIA) or after application of a groove at the femoral condyles of rats fed on high fat diet. Pain-like behaviors were followed over time using von Frey test and dynamic weight bearing. Joint damage was assessed by histology. Dorsal root ganglia (DRG) infiltrating immune cells were assessed over time using flow cytometry. To deplete monocytes and macrophages, Lysmcrex Csfr1-Stop-DTR were injected intrathecal or systemically with diptheria toxin (DT).Results:Intraarticular monoiodoacetate injection induced OA and signs of persistent pain, such as mechanical hyperalgesia and deficits in weight bearing. The persisting pain-like behaviors were associated with accumulation of F4/80+macrophages with an M1-like phenotype in the lumbar DRG appearing from 1 week after MIA injection, and that persisted till at least 4 weeks after MIA injection. Macrophages infiltrated DRG were also observed in the rat groove model of OA, 12 weeks after application of a groove at the femoral condyles. Systemic or local depletion of DRG macrophages during established MIA-induced OA completely ablated signs of pain, without affecting MIA-induced knee pathology. Intriguingly when monocytes/macrophages were depleted prior to induction of osteoarthritis, pain-like behaviors still developed, however these pain-like behaviors did not persist over time.In vitro,sensory neurons innervating the affected OA joint programmed macrophages into a M1 phenotype. Local repolarization of M1-like DRG macrophages towards M2 by intrathecal injection of M2 macrophages or anti-inflammatory cytokines resolved persistent OA-induced pain.Conclusion:Overall we show that macrophages infiltrate the DRG after knee damage and acquire a M1-like phenotype and maintain pain independent of the lesions in the knee joint. DRG-infiltrating macrophages are not required for induction of OA pain. Reprogramming M1-like DRG-infiltrating macrophages may represent a potential strategy to treat OA pain.Acknowledgments:This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No 814244 and No 642720. Dutch Arthritis SocietyDisclosure of Interests:Ramin Raoof: None declared, Christian Martin: None declared, Huub de Visser: None declared, Judith Prado: None declared, Sabine Versteeg: None declared, Anne Heinemans: None declared, Simon Mastbergen: None declared, Floris Lafeber Shareholder of: Co-founder and shareholder of ArthroSave BV, Niels Eijkelkamp: None declared


Author(s):  
Irene Riquelme ◽  
Miguel Angel Reina ◽  
André P. Boezaart ◽  
Francisco Reina ◽  
Virginia García-García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document