scholarly journals Quantitative analysis of mixed pigments for Chinese paintings using the improved method of ratio spectra derivative spectrophotometry based on mode

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuqiang Lyu ◽  
Yiyi Liu ◽  
Miaole Hou ◽  
Qinli Yin ◽  
Wangting Wu ◽  
...  

Abstract Background Mixed pigment analysis is an important and complex subject in preserving and restoring Chinese paintings since the colors observed by our naked eyes or instruments such as hyperspectral cameras are usually a mixture of several kinds of pigments. The purpose of this study was to explore a more effective method to confirm the type of every pure pigment and their proportion in pigment mixtures on the surface of paintings. Methods Two endmember extraction algorithms were adopted to identify the types of pigments and an improved method of ratio spectra derivative spectrophotometry was used to determine their proportion. Main works (1) Extracting the pure pigment components from mixed spectrum by adopting two blind source separation algorithms: Independent Component Analysis and Non-negative Matrix Factorization; (2) matching the separated pure spectrum with the pigment spectral library built in our laboratory to determine the pigment type; and (3) calculating the proportions of mixed pigments using the Ratio Spectra Derivative Spectrophotometry based on Mode, which is improved based on the original algorithm. Finally, a comparison was made with two abundance inversion algorithms: Least Squares Algorithm and Minimum Volume Simplex Analysis. The correlation coefficient and root mean square error were used to provide evidence for accuracy evaluation. Conclusions (1) Non-negative matrix factorization is more suitable for endmember extraction; and (2) Ratio spectra derivative spectrophotometry based on mode is more suitable for abundance inversion.

Author(s):  
Y. Liu ◽  
S. Lyu ◽  
M. Hou ◽  
Q. Yin

Since the colour in painting cultural relics observed by our naked eyes or hyperspectral cameras is usually a mixture of several kinds of pigments, the mixed pigments analysis will be an important subject in the field of ancient painting conservation and restoration. This paper aims to find a more effective method to confirm the types of every pure pigment from mixture on the surface of paintings. Firstly, we adopted two kinds of blind source separation algorithms, which are independent component analysis and non-negative matrix factorization, to extract the pure pigment component from mixed spectrum respectively. Moreover, we matched the separated pure spectrum with the pigments spectra library built by our team to determine the pigment type. Furthermore, three kinds of data including simulation data, mixed pigments spectral data measured in laboratory, and the spectral data of an ancient painting were chosen to evaluate the performance of the different algorithms. And the accuracy was compared between the two algorithms. Finally, the experimental results show that non-negative matrix factorization method is more suitable for endmember extraction in the field of ancient painting conservation and restoration.


2020 ◽  
Vol 12 (17) ◽  
pp. 2834
Author(s):  
Simon Rebeyrol ◽  
Yannick Deville ◽  
Véronique Achard ◽  
Xavier Briottet ◽  
Stephane May

Hyperspectral unmixing is a widely studied field of research aiming at estimating the pure material signatures and their abundance fractions from hyperspectral images. Most spectral unmixing methods are based on prior knowledge and assumptions that induce limitations, such as the existence of at least one pure pixel for each material. This work presents a new approach aiming to overcome some of these limitations by introducing a co-registered panchromatic image in the unmixing process. Our method, called Heterogeneity-Based Endmember Extraction coupled with Local Constrained Non-negative Matrix Factorization (HBEE-LCNMF), has several steps: a first set of endmembers is estimated based on a heterogeneity criterion applied on the panchromatic image followed by a spectral clustering. Then, in order to complete this first endmember set, a local approach using a constrained non-negative matrix factorization strategy, is proposed. The performance of our method, in regards of several criteria, is compared to those of state-of-the-art methods obtained on synthetic and satellite data describing urban and periurban scenes, and considering the French HYPXIM/HYPEX2 mission characteristics. The synthetic images are built with real spectral reflectances and do not contain a pure pixel for each endmember. The satellite images are simulated from airborne acquisition with the spatial and spectral features of the mission. Our method demonstrates the benefit of a panchromatic image to reduce some well-known limitations in unmixing hyperspectral data. On synthetic data, our method reduces the spectral angle between the endmembers and the real material spectra by 46% compared to the Vertex Component Analysis (VCA) and N-finder (N-FINDR) methods. On real data, HBEE-LCNMF and other methods yield equivalent performance, but, the proposed method shows more robustness over the data sets compared to the tested state-of-the-art methods. Moreover, HBEE-LCNMF does not require one to know the number of endmembers.


Sign in / Sign up

Export Citation Format

Share Document