scholarly journals The MMX rover: performing in situ surface investigations on Phobos

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Patrick Michel ◽  
Stephan Ulamec ◽  
Ute Böttger ◽  
Matthias Grott ◽  
Naomi Murdoch ◽  
...  

AbstractThe Japanese MMX sample return mission to Phobos by JAXA will carry a rover developed by CNES and DLR that will be deployed on Phobos to perform in situ analysis of the Martian moon’s surface properties. Past images of the surface of Phobos show that it is covered by a layer of regolith. However, the mechanical and compositional properties of this regolith are poorly constrained. In particular, from current remote images, very little is known regarding the particle sizes, their chemical composition, the packing density of the regolith as well as other parameters such as friction and cohesion that influence surface dynamics. Understanding the properties and dynamics of the regolith in the low-gravity environment of Phobos is important to trace back its history and surface evolution. Moreover, this information is also important to support the interpretation of data obtained by instruments onboard the main MMX spacecraft, and to minimize the risks involved in the spacecraft sampling operations. The instruments onboard the Rover are a Raman spectrometer (RAX), an infrared radiometer (miniRad), two forward-looking cameras for navigation and science purposes (NavCams), and two cameras observing the interactions of regolith and the rover wheels (WheelCams). The Rover will be deployed before the MMX spacecraft samples Phobos’ surface and will be the first rover to drive on the surface of a Martian moon and in a very low gravity environment. Graphic Abstract

2021 ◽  
Author(s):  
Patrick Michel ◽  
Stephan Ulamec ◽  
Ute Boettger ◽  
Matthias Grott ◽  
Naomi Murdoch ◽  
...  

Abstract The Japanese MMX sample return mission to Phobos by JAXA will carry a Rover developed by CNES and DLR that will be deployed on Phobos to perform in-situ analysis of the Martian moon's surface properties. Past images of the surface of Phobos show that it is covered by a layer of regolith. However, the mechanical and compositional properties of this regolith are poorly constrained. In particular nothing is known regarding the particle sizes, their chemical composition, the packing density of the regolith as well as other frictional parameters and surface dynamics from current remote images. Understanding the properties and dynamics of the regolith in the low-gravity environment of Phobos is important to trace back its history and surface evolution. Moreover, this information is also important to support the interpretation of data obtained by instruments onboard the main spacecraft and to minimize the risks involved in the sampling by the spacecraft. The instruments onboard the Rover are an infrared radiometer (miniRad), a Raman spectrometer (RAX), two cameras looking forwards for navigation and science purposes (NavCams), and two cameras observing the flow of regolith around the rover wheels (WheelCams). The Rover will be deployed before the sampling of Phobos' surface by MMX spacecraft and will be the first rover driving on a Martian moon and in a low-gravity environment.


1996 ◽  
Vol 150 ◽  
pp. 223-226 ◽  
Author(s):  
D.E. Brownlee ◽  
D. Burnett ◽  
B. Clark ◽  
M. S. Hanner ◽  
F. Horz ◽  
...  

AbstractSTARDUST, a Discovery-class mission, will return intact samples of cometary dust and volatiles from comet P/Wild 2, as well as samples of the interstellar dust moving through the solar system. Dust capture utilizes aerogel, a microporous silica that is capable of intact capture of hypervelocity particles. A navigation camera, an in situ dust analyzer, and a dust flux monitor complete the payload. The Wild 2 flyby takes place in January 2004, with Earth return in January 2006.


1995 ◽  
Author(s):  
S Coons ◽  
R Curtis ◽  
C McLain ◽  
J Williams ◽  
R Warwick ◽  
...  

1999 ◽  
Author(s):  
Daniel Thunnissen ◽  
Donald Rapp ◽  
Christopher Voorhees ◽  
Stephen Dawson ◽  
Carl Guernsey

2019 ◽  
Vol 491 (1) ◽  
pp. 153-177
Author(s):  
Florian Thuillet ◽  
Patrick Michel ◽  
Shogo Tachibana ◽  
Ronald-L Ballouz ◽  
Stephen R Schwartz

ABSTRACT Even if craters are very common on Solar System body surfaces, crater formation in granular media such as the ones covering most of visited asteroids still needs to be better understood, above all in low-gravity environments. JAXA’s sample return mission Hayabusa2, currently visiting asteroid (162173) Ryugu, is a perfect opportunity for studying medium-speed impacts into granular matter, since its sampling mechanism partly consists of a 300 m s−1 impact. In this paper, we look at medium-speed impacts, from 50 to 300 m s−1, into a granular material bed, to better understand crater formation and ejecta characteristics. We then consider the sampler horn of Hayabusa2 sampling mechanism and monitor the distribution of particles inside the horn. We find that the cratering process is much longer under low gravity, and that the crater formation mechanism does not seem to depend on the impact speed, in the considered range. The Z-model seems to rightly represent our velocity field for a steady excavation state. From the impact, less than $10{{\ \rm per\ cent}}$ is transmitted into the target, and grains are ejected mostly with angles between 48° and 54°. Concerning the sampling mechanism, we find that for most of the simulations, the science goal of 100 mg is fulfilled, and that a second impact increases the number of ejecta but not necessarily the number of collected particles.


2021 ◽  
Vol 13 (4) ◽  
pp. 590
Author(s):  
Jia Wang ◽  
Yu Zhang ◽  
Kaichang Di ◽  
Ming Chen ◽  
Jianfeng Duan ◽  
...  

Chang’e-5, China’s first unmanned lunar sample-return mission, was successfully landed in Northern Oceanus Procellarum on 1 December 2020. Determining the lander location precisely and timely is critical for both engineering operations and subsequent scientific research. Localization of the lander was performed using radio-tracking and image-based methods. The lander location was determined to be (51.92°W, 43.06°N) by both methods. Other localization results were compared for cross-validation. The localization results greatly contributed to the planning of the ascender lifting off from the lander and subsequent maneuvers, and they will contribute to scientific analysis of the returned samples and in situ acquired data.


Sign in / Sign up

Export Citation Format

Share Document