scholarly journals Development and fabrication of disease resistance protein in recombinant Escherichia coli

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sefli Sri Wahyu Effendi ◽  
Shih-I Tan ◽  
Chien-Hsiang Chang ◽  
Chun-Yen Chen ◽  
Jo-Shu Chang ◽  
...  

Abstract Cyanobacteria and Spirulina produce C-phycocyanin (CPC), a water soluble protein associated pigment, which is extensively used in food and pharmaceutical industries. Other therapeutic proteins might exist in microalgal cells, of which there is limited knowledge. Such proteins/peptides with antibiotic properties are crucial due to the emergence of multi-drug resistant pathogens. In addition, the native expression levels of such disease resistant proteins are low, hindering further investigation. Thus, screening and overexpression of such novel proteins is urgent and important. In this study, a protein which was identified as a putative disease resistance protein (DRP) in the mixture of Spirulina product has been explored for the first time. To improve protein expression, DRP was cloned in the pET system, co-transformed with pRARE plasmid for codon optimization and was significantly overexpressed in E. coli BL21(DE3) under induction with isopropyl-β-d-1-thiogalactopyranoside (IPTG). Furthermore, soluble DRP exhibited intense antimicrobial activity against predominant pathogens, and an inhibition zone of 1.59 to 1.74 cm was obtained for E. coli. At a concentration 4 mg/mL, DRP significantly elevated the growth of L. rhamnosus ZY up to twofold showing probable prebiotic activities. Moreover, DRP showed potential as an effective antioxidant, and the scavenging ability for ROS was in the order of hydroxyl > DPPH > superoxide radicals. A putative disease resistance protein (DRP) has been identified, sequenced, cloned and over-expressed in E. coli as a functional protein. Thus expressed DRP showed potential anti-microbial and antioxidant properties, with promising therapeutic applications.

2019 ◽  
Vol 17 (2) ◽  
pp. 161-171
Author(s):  
M. Thoihidul Islam ◽  
Mohammad Rashid Arif ◽  
Arif Hasan Khan Robin

Wheat blast is a devastating disease which is baffling scientists from its inception. This study characterized the blast resistance related protein domains with a view to develop molecular markers to identify resistant wheat genotypes against Blast fungus Magnaporthe oryzae. A genome browse analysis detected that the candidate resistance gene against blast could be located in several different chromosomes. An in silico analysis was collected with fifty nucleotide-binding site leucine-rich repeat (NBS-LRR), leucine-rich repeat (LRR), pathogenesis and resistance protein-encoding accessions on the basis of the previous resistance report. The phylogenetic tree of those putative resistance accessions, bearing resistance related protein-encoding domains, showed that an NBS-LRR accession JP957107.1 has 67% similarity with the disease resistance protein domain encoding accession of Brazilian resistant cultivar Thatcher. By contrast, the rice blast resistance Pita gene has 72% similarity with 18 pathogenesis protein domain encoding accessions. Among putative protein domains, disease resistance protein of Thatcher has 78% similarity with two NBS-LRR protein domains AAZ99757.1 and AAZ99757.1. Eighteen microsatellite markers were designed from eighteen putative NBS-LRR protein encoding accessions along with Piz3 marker. The 19 markers were unable to separate resistant and susceptible genotypes. Diffused versus conspicuous bands indicated either presence of insertion/deletion (InDel) or single nucleotide polymorphism (SNP) among wheat genotypes. Detection of InDel or SNP markers is a subject of further investigation. Additional markers are needed to be designed using new NBS-LRR, pathogenesis, coiled-coil (CC), translocated intimin receptor (TIR) resistance protein encoding accessions to find out markers specific for blast resistance. J. Bangladesh Agril. Univ. 17(2): 161–171, June 2019


2016 ◽  
Vol 171 (1) ◽  
pp. 658-674 ◽  
Author(s):  
Louis-Philippe Hamel ◽  
Ken-Taro Sekine ◽  
Thérèse Wallon ◽  
Yuji Sugiwaka ◽  
Kappei Kobayashi ◽  
...  

Science ◽  
2016 ◽  
Vol 351 (6274) ◽  
pp. 684-687 ◽  
Author(s):  
S. H. Kim ◽  
D. Qi ◽  
T. Ashfield ◽  
M. Helm ◽  
R. W. Innes

2010 ◽  
Vol 23 (12) ◽  
pp. 1635-1642 ◽  
Author(s):  
Jayaveeramuthu Nirmala ◽  
Tom Drader ◽  
Xianming Chen ◽  
Brian Steffenson ◽  
Andris Kleinhofs

Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutants encoding an RPG1 protein with an in vitro inactive kinase domain fail to phosphorylate RPG1 in vivo and are susceptible to stem rust, demonstrating that phosphorylation is a prerequisite for disease resistance. Protein kinase inhibitors prevent RPG1 phosphorylation and result in susceptibility to stem rust, providing further evidence for the importance of phosphorylation in disease resistance. We conclude that phosphorylation of the RPG1 protein by the kinase activity of the pK2 domain induced by the interaction with an unknown pathogen spore product is required for resistance to the avirulent stem rust races. The pseudokinase pK1 domain is required for disease resistance but not phosphorylation. The very rapid phosphorylation of RPG1 suggests that an effector is already present in or on the stem rust urediniospores when they are placed on the leaf surface. However, spores must be alive, as determined by their ability to germinate, in order to elicit RPG1 phosphorylation.


2012 ◽  
Vol 14 (7) ◽  
pp. 1071-1084 ◽  
Author(s):  
Brody J. DeYoung ◽  
Dong Qi ◽  
Sang-Hee Kim ◽  
Thomas P. Burke ◽  
Roger W. Innes

Sign in / Sign up

Export Citation Format

Share Document