scholarly journals A multi-purpose National Forest Inventory in Bangladesh: design, operationalisation and key results

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 316
Author(s):  
Haris R. Gilani ◽  
John L. Innes

The Forest Resources Assessment 2015 is a comprehensive dataset from the Food and Agriculture Organization of the United Nations (FAO), which provides the opportunity to explore some of the emerging topics related to sustainable forest management. This paper assesses how forests in British Columbia, Canada, compare globally on several key sustainable forest management parameters in four domains—biophysical indicators and legal framework, management plans, data management, and stakeholder involvement. The comparison was done against eight jurisdictions, namely Australia, China, Japan, the European Union, New Zealand, the Russian Federation and the USA. To accomplish our objectives, country-specific data on sustainable forest management parameters were extracted from the 2015 FAO’s Global Forest Resources Assessment (FRA). Data specific to B.C. were sourced from Canada’s National Forest Inventory, and National Forest Database. Our results showed that British Columbia (B.C.) has one of the highest proportions of land covered with forests (57%) among all jurisdictions. The total forest area in B.C. has remained stable at around 55 million ha. The current rate of deforestation (6200 ha per year) is among the lowest in all jurisdictions. Data on the extent of primary forests in B.C. is unavailable. However, 22.6 million ha (41% of B.C.′s forests) have been classified as old growth forests (using a definition unique to B.C.). B.C. is the leading provincial forest producer by volume, and produced 67.97 million m3 of roundwood in 2015. With approximately 11 billion m3 of standing timber, roundwood production volume has held steady since 1990. In British Columbia, the National Forest Inventory—British Columbia Program (NFI-B.C.) is used to track and monitor the current status of the forests. It involves both ground plots and remote sensing. The most recent B.C. State of the Forests is one of the most comprehensive reports among all jurisdictions, using 24 topic areas, with each topic comprising several indicators of sustainable forest management. We conclude that British Columbia ranks high among other jurisdictions on several key sustainable forest management parameters with legislation and forest management regimes aiming to meet the environmental, social and economic needs of current and future generations.


2018 ◽  
Vol 15 (2) ◽  
pp. 399-412 ◽  
Author(s):  
Titta Majasalmi ◽  
Stephanie Eisner ◽  
Rasmus Astrup ◽  
Jonas Fridman ◽  
Ryan M. Bright

Abstract. Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface–atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.


2019 ◽  
Vol 12 (3) ◽  
pp. 167-183 ◽  
Author(s):  
Dan Altrell

Mongolia’s first Multipurpose National Forest Inventory, 2014-2017, was implemented by the Forest Research and Development Centre, in collaboration with international expertise and the country’s main forestry institutions, universities and research organisations.The long-term objective of the multipurpose NFI is to promote sustainable management of forestry resources in Mongolia, to enhance their social, economic and environmental functions.The NFI findings show that there are 11.3 million hectares of Boreal Forest in Mongolia. 9.5 million hectares are Stocked Boreal Forest Area, of which 69 percent is located outside of protected areas, 4 percent are designated for green-wood utilisation through forest enterprise concessions, and another 16 percent designated for fallen dead-wood collection through forest user group concessions. The non-protected stocked forests (i.e. production forest) have an average growing stock volume of 115 m3 per hectare, compared with an optimal growing stock volume of 237 m3 per hectare, and there is an additional 46.5 m3 of dead wood per hectare. The growing stock age distribution shows that 24 m3 per hectare are over 200 years (i.e. economically over-aged). The main tree species in stocked forest are Larix sibirica (81%), Pinus sibirica (7%), Betula platyphylla (6%) and Pinus sylvestris (5%), of which all, except for P. sibirica, are classified as legally harvestable tree species. Wild fire is the current main environmental factor decreasing the forest tree biomass.The NFI helped identifying priority areas for the forestry sector, and to guide the implementation of sustainable forest management at the local level. The main forest management challenges of Mongolia’s boreal forest will be to address that they are a) under-stocked (less than 50% of production potential), b) over-aged (31% of growing stock volume in stocked production forest is above optimal production age), and c) under-utilised (4% of forest area designated to green-wood utilisation). 


2017 ◽  
Author(s):  
Titta Majasalmi ◽  
Stephanie Eisner ◽  
Rasmus Astrup ◽  
Jonas Fridman ◽  
Ryan M. Bright

Abstract. Forest management greatly affects the distribution of tree species and the age class composition of a forest, shaping its overall structure and functioning, and in turn, surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of regional National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related Look-Up-Table (LUT) of key forest structural parameter values was developed, and the classification was applied for NFI maps from Norway, Sweden and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Intiative's Land Cover (ESA CCI LC) map of present land cover (v.1.6.1) (http://maps.elie.ucl.ac.be/CCI/). An enhanced grouping by aboveground structure can improve climate predictions in intensively managed forested regions and is consistent with climate model routines that simulate the effects of land transitions through area-based changes in vegetation cover. Further, such a classification scheme is congruent with existing forestry tools employed to predict the evolution of forest structure over interannual time scales, and as such, may be viewed as a tool that links the climate and forest modeling communities.


2005 ◽  
Vol 81 (2) ◽  
pp. 214-221 ◽  
Author(s):  
M D Gillis ◽  
A Y Omule ◽  
T. Brierley

A new national forest inventory is being installed in Canada. For the last 20 years, Canada's forest inventory has been a compilation of inventory data from across the country. Although this method has a number of advantages, it lacks information about the nature and rate of changes to the resource, and does not permit projections or forecasts. To address these limitations a new National Forest Inventory (NFI) was developed to monitor Canada's progress in meeting a commitment towards sustainable forest management, and to satisfy requirements for national and international reporting. The purpose of the new inventory is to "assess and monitor the extent, state and sustainable development of Canada's forests in a timely and accurate manner." The NFI consists of a plot-based system of permanent observational units located on a national grid. A combination of ground plot, photo plot and remote sensing data are used to capture a set of basic attributes that are used to derive indicators of sustainability. To meet the monitoring needs a re-measurement strategy and framework to guide the development of change estimation procedures has been worked out. A plan for implementation has been drafted. The proposed plan is presented and discussed in this paper. Key words: Canada, forest cover, inventory, monitoring, National Forest Inventory, re-measurement, panel


2018 ◽  
Vol 48 (11) ◽  
pp. 1251-1268 ◽  
Author(s):  
Wade T. Tinkham ◽  
Patrick R. Mahoney ◽  
Andrew T. Hudak ◽  
Grant M. Domke ◽  
Mike J. Falkowski ◽  
...  

The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest resources in the United States for over 80 years; presented here is a synthesis of research applications for FIA data. A review of over 180 publications that directly utilize FIA data is broken down into broad categories of application and further organized by methodologies and niche research areas. The FIA program provides the most comprehensive forest database currently available, with permanent plots distributed across all forested lands and ownerships in the United States and plot histories dating back to the early 1930s. While the data can be incredibly powerful, users need to understand the spatial resolution of ground-based plots and the nature of the FIA plot coordinate system must be applied correctly. As the need for accurate assessments of national forest resources continues to be a global priority, particularly related to carbon dynamics and climate impacts, such national forest inventories will continue to be an important source of information on the status of and trends in these ecosystems. The advantages and limitations of FIA’s national forest inventory data are highlighted, and suggestions for further expansion of the FIA program are provided.


Sign in / Sign up

Export Citation Format

Share Document