scholarly journals Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae

Author(s):  
David Radice ◽  
Sean M Couch ◽  
Christian D Ott
2002 ◽  
Vol 14 (4) ◽  
pp. 1511-1522 ◽  
Author(s):  
Branko Kosović ◽  
Dale I. Pullin ◽  
Ravi Samtaney

2007 ◽  
Vol 129 (12) ◽  
pp. 1493-1496 ◽  
Author(s):  
William J. Rider

Implicit large eddy simulation (ILES) has provided many computer simulations with an efficient and effective model for turbulence. The capacity for ILES has been shown to arise from a broad class of numerical methods with specific properties producing nonoscillatory solutions using limiters that provide these methods with nonlinear stability. The use of modified equation has allowed us to understand the mechanisms behind the efficacy of ILES as a model. Much of the understanding of the ILES modeling has proceeded in the realm of incompressible flows. Here, we extend this analysis to compressible flows. While the general conclusions are consistent with our previous findings, the compressible case has several important distinctions. Like the incompressible analysis, the ILES of compressible flow is dominated by an effective self-similarity model (Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1980, “Improved Subgrid Scale Models for Large Eddy Simulations,” AIAA Paper No. 80–1357; Borue, V., and Orszag, S. A., 1998, “Local Energy Flux and Subgrid-Scale Statistics in Three Dimensional Turbulence,” J. Fluid Mech., 366, pp. 1–31; Meneveau, C., and Katz, J., 2000, “Scale-Invariance and Turbulence Models for Large-Eddy Simulations,” Annu. Rev. Fluid. Mech., 32, pp. 1–32). Here, we focus on one of these issues, the form of the effective subgrid model for the conservation of mass equations. In the mass equation, the leading order model is a self-similarity model acting on the joint gradients of density and velocity. The dissipative ILES model results from the limiter and upwind differencing resulting in effects proportional to the acoustic modes in the flow as well as the convective effects. We examine the model in several limits including the incompressible limit. This equation differs from the standard form found in the classical Navier–Stokes equations, but generally follows the form suggested by Brenner (2005, “Navier-Stokes Revisited,” Physica A, 349(1–2), pp. 60–133) in a modification of Navier–Stokes necessary to successfully reproduce some experimentally measured phenomena. The implications of these developments are discussed in relation to the usual turbulence modeling approaches.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 92 ◽  
Author(s):  
Aarne Lees ◽  
Hussein Aluie

The role of baroclinicity, which arises from the misalignment of pressure and density gradients, is well-known in the vorticity equation, yet its role in the kinetic energy budget has never been obvious. Here, we show that baroclinicity appears naturally in the kinetic energy budget after carrying out the appropriate scale decomposition. Strain generation by pressure and density gradients, both barotropic and baroclinic, also results from our analysis. These two processes underlie the recently identified mechanism of “baropycnal work”, which can transfer energy across scales in variable density flows. As such, baropycnal work is markedly distinct from pressure-dilatation into which the former is implicitly lumped in Large Eddy Simulations. We provide numerical evidence from 1024 3 direct numerical simulations of compressible turbulence. The data shows excellent pointwise agreement between baropycnal work and the nonlinear model we derive, supporting our interpretation of how it operates.


2010 ◽  
Vol 6 (S274) ◽  
pp. 80-84
Author(s):  
A. A. Chernyshov ◽  
K. V. Karelsky ◽  
A. S. Petrosyan

AbstractWe apply large eddy simulation technique to carry out three-dimensional numerical simulation of compressible magnetohydrodynamic turbulence in conditions relevant local interstellar medium. According to large eddy simulation method, the large-scale part of the flow is computed directly and only small-scale structures of turbulence are modeled. The small-scale motion is eliminated from the initial system of equations of motion by filtering procedures and their effect is taken into account by special closures referred to as the subgrid-scale models. Establishment of weakly compressible limit with Kolmogorov-like density fluctuations spectrum is shown in present work. We use our computations results to study dynamics of the turbulent plasma beta and anisotropic properties of the magnetoplasma fluctuations in the local interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document