Computational Astrophysics and Cosmology
Latest Publications


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 2)

Published By Springer (Biomed Central Ltd.)

2197-7909, 2197-7909

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Miles L. Timpe ◽  
Maria Han Veiga ◽  
Mischa Knabenhans ◽  
Joachim Stadel ◽  
Stefano Marelli

AbstractIn the late stages of terrestrial planet formation, pairwise collisions between planetary-sized bodies act as the fundamental agent of planet growth. These collisions can lead to either growth or disruption of the bodies involved and are largely responsible for shaping the final characteristics of the planets. Despite their critical role in planet formation, an accurate treatment of collisions has yet to be realized. While semi-analytic methods have been proposed, they remain limited to a narrow set of post-impact properties and have only achieved relatively low accuracies. However, the rise of machine learning and access to increased computing power have enabled novel data-driven approaches. In this work, we show that data-driven emulation techniques are capable of classifying and predicting the outcome of collisions with high accuracy and are generalizable to any quantifiable post-impact quantity. In particular, we focus on the dataset requirements, training pipeline, and classification and regression performance for four distinct data-driven techniques from machine learning (ensemble methods and neural networks) and uncertainty quantification (Gaussian processes and polynomial chaos expansion). We compare these methods to existing analytic and semi-analytic methods. Such data-driven emulators are poised to replace the methods currently used in N-body simulations, while avoiding the cost of direct simulation. This work is based on a new set of 14,856 SPH simulations of pairwise collisions between rotating, differentiated bodies at all possible mutual orientations.


Author(s):  
Nathanaël Perraudin ◽  
Ankit Srivastava ◽  
Aurelien Lucchi ◽  
Tomasz Kacprzak ◽  
Thomas Hofmann ◽  
...  

AbstractDeep generative models, such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAs) have been demonstrated to produce images of high visual quality. However, the existing hardware on which these models are trained severely limits the size of the images that can be generated. The rapid growth of high dimensional data in many fields of science therefore poses a significant challenge for generative models. In cosmology, the large-scale, three-dimensional matter distribution, modeled with N-body simulations, plays a crucial role in understanding the evolution of structures in the universe. As these simulations are computationally very expensive, GANs have recently generated interest as a possible method to emulate these datasets, but they have been, so far, mostly limited to two dimensional data. In this work, we introduce a new benchmark for the generation of three dimensional N-body simulations, in order to stimulate new ideas in the machine learning community and move closer to the practical use of generative models in cosmology. As a first benchmark result, we propose a scalable GAN approach for training a generator of N-body three-dimensional cubes. Our technique relies on two key building blocks, (i) splitting the generation of the high-dimensional data into smaller parts, and (ii) using a multi-scale approach that efficiently captures global image features that might otherwise be lost in the splitting process. We evaluate the performance of our model for the generation of N-body samples using various statistical measures commonly used in cosmology. Our results show that the proposed model produces samples of high visual quality, although the statistical analysis reveals that capturing rare features in the data poses significant problems for the generative models. We make the data, quality evaluation routines, and the proposed GAN architecture publicly available at https://github.com/nperraud/3DcosmoGAN.


Author(s):  
Kyle B. Johnston ◽  
Rana Haber ◽  
Saida M. Caballero-Nieves ◽  
Adrian M. Peter ◽  
Véronique Petit ◽  
...  

Abstract We present the construction of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm. We focus on the targeted identification of eclipsing binaries that demonstrate a feature known as the O’Connell effect. Our proposed methodology maps stellar variable observations to a new representation known as distribution fields (DFs). Given this novel representation, we develop a metric learning technique directly on the DF space that is capable of specifically identifying our stars of interest. The metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the O’Connell effect. The result is a conservative selection of 124 potential targets of interest out of the Villanova Eclipsing Binary Catalog. Our framework demonstrates favorable performance on Kepler eclipsing binary data, taking a crucial step in preparing the way for large-scale data volumes from next-generation telescopes such as LSST and SKA.


Author(s):  
Asmita Bhandare ◽  
Susanne Pfalzner

Abstract Most stars form as part of a stellar group. These young stars are mostly surrounded by a disk from which potentially a planetary system might form. Both, the disk and later on the planetary system, may be affected by the cluster environment due to close fly-bys. The here presented database can be used to determine the gravitational effect of such fly-bys on non-viscous disks and planetary systems. The database contains data for fly-by scenarios spanning mass ratios between the perturber and host star from 0.3 to 50.0, periastron distances from 30 au to 1000 au, orbital inclination from 0∘ to 180∘ and angle of periastron of 0∘, 45∘ and 90∘. Thus covering a wide parameter space relevant for fly-bys in stellar clusters. The data can either be downloaded to perform one’s own diagnostics like for e.g. determining disk size, disk mass, etc. after specific encounters, obtain parameter dependencies or the different particle properties can be visualized interactively. Currently the database is restricted to fly-bys on parabolic orbits, but it will be extended to hyperbolic orbits in the future. All of the data from this extensive parameter study is now publicly available as DESTINY.


Author(s):  
Dylan Nelson ◽  
Volker Springel ◽  
Annalisa Pillepich ◽  
Vicente Rodriguez-Gomez ◽  
Paul Torrey ◽  
...  
Keyword(s):  

Author(s):  
Mustafa Mustafa ◽  
Deborah Bard ◽  
Wahid Bhimji ◽  
Zarija Lukić ◽  
Rami Al-Rfou ◽  
...  

Author(s):  
Carl L. Rodriguez ◽  
Bharath Pattabiraman ◽  
Sourav Chatterjee ◽  
Alok Choudhary ◽  
Wei-keng Liao ◽  
...  

Author(s):  
Andres C. Rodríguez ◽  
Tomasz Kacprzak ◽  
Aurelien Lucchi ◽  
Adam Amara ◽  
Raphaël Sgier ◽  
...  

Author(s):  
Jordy Davelaar ◽  
Thomas Bronzwaer ◽  
Daniel Kok ◽  
Ziri Younsi ◽  
Monika Mościbrodzka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document