scholarly journals Bone regeneration of demineralized dentin matrix with platelet-rich fibrin and recombinant human bone morphogenetic protein-2 on the bone defects in rabbit calvaria

Author(s):  
Beom-Jin Kim ◽  
Seok-Kon Kim ◽  
Jae-Hoon Lee

Abstract Background This study was to evaluate the bone formation ability of demineralized dentin matrix (DDM) combined with platelet-rich fibrinogen (PRF) and DDM combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) to improve the osteoinductive ability of DDM. Methods After four bone defects with a diameter of 8mm were created in the calvarium of each rabbit, DDM was grafted into the first defect (experimental groups 1), a combination of DDM and PRF was grafted into the second defect (experimental groups 2), and DDM with absorbed rhBMP-2 was grafted into the third defect (experimental groups 3). The fourth defect was used as the control group. Twelve healthy male rabbits (New Zealand, white rabbits) weighing around 3.0–4.0 kg were used. Among 12 rabbits, 3 rabbits were sacrificed immediately after surgery and at 2, 4, and 8 weeks after surgery, respectively. Histopathologic analysis and histomorphometric analysis were conducted to evaluate bone formation in each group. Results The PRF/DDM group did not show a significantly higher degree of new bone formation in calvarial bone defects than the DDM group at 2, 4, and 8 weeks postoperatively in histopathological findings and histomorphometric results. On the other side, the rhBMP-2/DDM group showed higher degrees of new bone formation and calcification, and the lamellae of bone matrix, which are observed in mature bone tissue, were more distinctly visible in the rhBMP-2/DDM group. Moreover, the rhBMP-2/DDM group showed a significantly higher amount of new bone formation, compared to the DDM group at 4 and 8 weeks postoperatively (P<0.05) in histomorphometric results. Conclusion The DDM has great potential as a carrier for the maintenance and sustained release of rhBMP-2, which has been recently receiving wide attention as a type of signaling molecules to promote bone formation.

2018 ◽  
Vol 8 (8) ◽  
pp. 1288 ◽  
Author(s):  
Gyu-Un Jung ◽  
Tae-Hyun Jeon ◽  
Mong-Hun Kang ◽  
In-Woong Um ◽  
In-Seok Song ◽  
...  

The aim of this study was to evaluate the clinical, volumetric, radiographic, and histologic aspects of autogenous demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) used for ridge preservation, compared to those of deproteinized bovine bone with collagen (DBBC). Following atraumatic extraction, the socket was filled with DBBC, DDM, or rhBMP-2/DDM. Scanned images of dental casts and cone beam computed tomographs (CBCT) were superimposed for the calculation of soft and hard tissue volume alteration. Preoperative and postoperative measurements of the height and width of the alveolar ridge were compared using CBCT images. After 4 months, bone specimens were harvested for histomorphometric assessment. Loss of hard and soft tissue volume occurred at 4 months after extraction and ridge preservation in all groups. No volumetric differences were detected among the three groups before and 4 months after ridge preservation. The reduction in the horizontal width at 5 mm was higher in the DBBC compared to the DDM. Histologically, approximately 40% newly formed bone was founded in rhBMP-2/DDM group. The autogenous dentin matrix used to fill the socket was as beneficial for ridge preservation as conventional xenografts. The combination of rhBMP-2 with dentin matrix also demonstrated appreciable volumetric stability and higher new bone formation compared to DDM alone and DBBC.


2010 ◽  
Vol 112 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Dongmei He ◽  
David G. Genecov ◽  
Morley Herbert ◽  
Raul Barcelo ◽  
Mohammed E. Elsalanty ◽  
...  

Object This study was designed to evaluate the bone regeneration potential of the dura mater and dura mater substitute (Durepair) in the presence of recombinant human bone morphogenetic protein–2 (rhBMP-2) delivered in a collagen sponge–collagen-ceramic matrix (CCM; MasterGraft Matrix) in a large skull defect in growing canines. Methods Forty immature male beagles were used to create two 2.5 × 4–cm cranial defects on each side of the sagittal suture. The dura mater on the left side was cut to make a 1 × 3–cm defect and replaced with bovine skin collagen (Durepair). The dura mater on the right side remained intact. Different doses of rhBMP-2 (none [8 animals], 0.11 mg/ml [4 animals], 0.21 mg/ml [4 animals], and 0.43 mg/ml [8 animals]) were infused on 2 Type I bovine absorbable collagen sponge (ACS) strips. The strips were layered with the CCM (15% hydroxyapatite [HA]/85% tricalcium phosphate [TCP]) to reconstruct both cranial defects. In a fifth group (8 animals), 0.43 mg/ml rhBMP-2 was directly infused into the CCM. Demineralized canine cancellous freeze-dried demineralized bone matrix (DBM; 8 animals) was used as a control in a sixth group. All materials were fixed under 2 resorbable protective sheets (MacroPore). Skulls were resected 16 weeks after operation. Histological and histomorphometric analyses on the percentage of the defect spanned by bone, and the percentage of residual HA-TCP granules and collagen were analyzed. Results Calcified seroma was the only complication observed and only occurred in the 0.43-mg/ml rhBMP-2 groups (Groups 4 and 5). Dura mater repair appeared complete at 4 months in all animals. New bone was formed sporadically throughout the skull defect in the ACS+CCM and DBM groups without rhBMP-2. In all rhBMP-2 groups, mature new bone (compact and trabecular) was uniformly formed across the defect on both the repaired and intact dura mater sides. There was significant new compact bone formation on top of the repaired dura mater, which did not appear in the ACS+CCM and DBM groups lacking rhBMP-2. Greater HA-TCP and collagen scaffold resorption was noted in rhBMP-2 groups compared with non–rhBMP-2 groups. Statistical analysis showed there was a significantly lower percentage of bone spanning the defect in the ACS+CCM group compared with groups with rhBMP-2, with more residual HA-TCP and collagen on the repaired dura mater side than the intact dura mater side (p < 0.05). In all rhBMP-2 groups, there were no significant differences in new bone formation between the repaired and intact dura mater sides (p > 0.05). Conclusions The ACS+CCM combination had an effect similar to demineralized bone-on-bone regeneration in craniofacial reconstruction. The addition of rhBMP-2 to CCM directly or with ACS induces mature new bone formation in large cranial defects both in the presence of intact dura mater and repaired dura mater.


Sign in / Sign up

Export Citation Format

Share Document