scholarly journals A predictable smoothing evolution model for computer-controlled polishing

Author(s):  
Jing Hou ◽  
Pengli Lei ◽  
Shiwei Liu ◽  
Xianhua Chen ◽  
Jian Wang ◽  
...  

AbstractQuantitative prediction of the smoothing of mid-spatial frequency errors (MSFE) is urgently needed to realize process guidance for computer controlled optical surfacing (CCOS) rather than a qualitative analysis of the processing results. Consequently, a predictable time-dependent model combining process parameters and an error decreasing factor (EDF) were presented in this paper. The basic smoothing theory, solution method and modification of this model were expounded separately and verified by experiments. The experimental results show that the theoretical predicted curve agrees well with the actual smoothing effect. The smoothing evolution model provides certain theoretical support and guidance for the quantitative prediction and parameter selection of the smoothing of MSFE.

2021 ◽  
Vol 29 ◽  
pp. 455-461
Author(s):  
Bing Hu ◽  
Zhizhi Wang ◽  
Minbo Xu ◽  
Luyao Zhu ◽  
Dingjiang Wang

BACKGROUND: The selection of optimal target areas in the surgical treatment of epilepsy is always a difficult problem in medicine. OBJECTIVE: We employed a theoretical calculation model to explore the control mechanism of seizures by an external voltage stimulus acting in different nerve nuclei. METHODS: Theoretical analysis and numerical simulation were combined. RESULTS: The globus pallidus, excitatory pyramidal neurons, striatal D1 neurons, thalamic reticular nucleus and specific relay nuclei were selected, we analyzed that the electrical stimulation has different effects in these target areas. CONCLUSIONS: The data selected were reasonable in study, the results may give a theoretical support for similar studies in clinical.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Yajun Wang ◽  
Yunfei Zhang ◽  
Renke Kang ◽  
Fang Ji

The dwell time algorithm is one of the key technologies that determines the accuracy of a workpiece in the field of ultra-precision computer-controlled optical surfacing. Existing algorithms mainly consider meticulous mathematics theory and high convergence rates, making the computation process more uneven, and the flatness cannot be further improved. In this paper, a reasonable elementary approximation algorithm of dwell time is proposed on the basis of the theoretical requirement of a removal function in the subaperture polishing and single-peak rotational symmetry character of its practical distribution. Then, the algorithm is well discussed with theoretical analysis and numerical simulation in cases of one-dimension and two-dimensions. In contrast to conventional dwell time algorithms, this proposed algorithm transforms superposition and coupling features of the deconvolution problem into an elementary approximation issue of function value. Compared with the conventional methods, it has obvious advantages for improving calculation efficiency and flatness, and is of great significance for the efficient computation of large-aperture optical polishing. The flatness of φ150 mm and φ100 mm workpieces have achieved PVr150 = 0.028 λ and PVcr100 = 0.014 λ respectively.


1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


2011 ◽  
Vol 399-401 ◽  
pp. 1763-1767
Author(s):  
Ri Pan ◽  
Wei Yang ◽  
Yin Biao Guo ◽  
Feng Yang ◽  
Dong Xu Zhang

Computer controlled optical surfacing (CCOS) is widely used in aspheric optical lenses fabrication because of their high convergence rate on surface based on deterministic removal processes since 1963. As an important part of CCOS techniques, reasonable tool-path would increase the polishing speed, decrease the processing time and then improve the efficiency of polishing. Optimized policy combined with improved Prim algorithm is presented in this paper based on the study of the characteristic of aspheric polishing and the tool-paths in common use. The simulated results show that the length of tool-path is reduced so as to decrease the processing time and increase the working efficiency.


Sign in / Sign up

Export Citation Format

Share Document