scholarly journals A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Luca Bellesi ◽  
Rolf Wyttenbach ◽  
Diego Gaudino ◽  
Paolo Colleoni ◽  
Francesco Pupillo ◽  
...  
2018 ◽  
Vol 52 ◽  
pp. 61
Author(s):  
Luca Bellesi ◽  
Rolf Wyttenbach ◽  
Diego Gaudino ◽  
Maria Antonietta Piliero ◽  
Francesco Pupillo ◽  
...  

2018 ◽  
Vol 59 (10) ◽  
pp. 1194-1202 ◽  
Author(s):  
Helle Precht ◽  
Oke Gerke ◽  
Jesper Thygesen ◽  
Kenneth Egstrup ◽  
Søren Auscher ◽  
...  

Background Computed tomography (CT) technology is rapidly evolving and software solution developed to optimize image quality and/or lower radiation dose. Purpose To investigate the influence of adaptive statistical iterative reconstruction (ASIR) at different radiation doses in coronary CT angiography (CCTA) in detailed image quality. Material and Methods A total of 160 CCTA were reconstructed as follows: 55 scans with filtered back projection (FBP) (650 mA), 51 scans (455 mA) with 30% ASIR (ASIR30), and 54 scans (295 mA) with 60% ASIR (ASIR60). For each reconstruction, subjective image quality was assessed by five independent certified cardiologists using a visual grading analysis (VGA) with five predefined image quality criteria consisting of a 5-point scale. Objective measures were contrast, noise, and contrast-to-noise ratio (CNR). Results The CTDIvol resulted in 10.3 mGy, 7.4 mGy, and 4.6 mGy for FBP, ASIR30, and ASIR60, respectively. Homogeneity of the left ventricular lumen was the sole aspect in which reconstruction algorithms differed with a decreasing effect for ASIR60 compared to FBP (estimated odds ratio [OR] = 0.49 [95% confidence interval (CI) = 0.32–0.76; P = 0.001]). Decreased sharpness and spatial- and low-contrast resolutions were observed when using ASIR instead of FBP, but differences were not statistically significant. Concerning objective measurements, noise increased significantly for ASIR30 (OR = 1.08; 95% CI = 1.02–1.14; P = 0.006) and ASIR60 (OR = 1.06; 95% CI = 1.01–1.12; P = 0.034) compared to FBP. Conclusion ASIR significantly decreased the subjectively assessed homogeneity of the left ventricular lumen and increased the objectively measured noise compared to FBP. Considering these results, ASIR at a reduced radiation dose should be implemented with caution.


Author(s):  
Juliane Conzelmann ◽  
Ulrich Genske ◽  
Arthur Emig ◽  
Michael Scheel ◽  
Bernd Hamm ◽  
...  

Abstract Objectives To evaluate the effects of anatomical phantom structure on task-based image quality assessment compared with a uniform phantom background. Methods Two neck phantom types of identical shape were investigated: a uniform type containing 10-mm lesions with 4, 9, 18, 30, and 38 HU contrast to the surrounding area and an anatomically realistic type containing lesions of the same size and location with 10, 18, 30, and 38 HU contrast. Phantom images were acquired at two dose levels (CTDIvol of 1.4 and 5.6 mGy) and reconstructed using filtered back projection (FBP) and adaptive iterative dose reduction 3D (AIDR 3D). Detection accuracy was evaluated by seven radiologists in a 4-alternative forced choice experiment. Results Anatomical phantom structure impaired lesion detection at all lesion contrasts (p < 0.01). Detectability in the anatomical phantom at 30 HU contrast was similar to 9 HU contrast in uniform images (91.1% vs. 89.5%). Detection accuracy decreased from 83.6% at 5.6 mGy to 55.4% at 1.4 mGy in uniform FBP images (p < 0.001), whereas AIDR 3D preserved detectability at 1.4 mGy (80.7% vs. 85% at 5.6 mGy, p = 0.375) and was superior to FBP (p < 0.001). In the assessment of anatomical images, superiority of AIDR 3D was not confirmed and dose reduction moderately affected detectability (74.6% vs. 68.2%, p = 0.027 for FBP and 81.1% vs. 73%, p = 0.018 for AIDR 3D). Conclusions A lesion contrast increase from 9 to 30 HU is necessary for similar detectability in anatomical and uniform neck phantom images. Anatomical phantom structure influences task-based assessment of iterative reconstruction and dose effects. Key Points • A lesion contrast increase from 9 to 30 HU is necessary for similar low-contrast detectability in anatomical and uniform neck phantom images. • Phantom background structure influences task-based assessment of iterative reconstruction and dose effects. • Transferability of CT assessment to clinical imaging can be expected to improve as the realism of the test environment increases.


2014 ◽  
Vol 83 (9) ◽  
pp. 1645-1654 ◽  
Author(s):  
Thorsten Klink ◽  
Verena Obmann ◽  
Johannes Heverhagen ◽  
Alexander Stork ◽  
Gerhard Adam ◽  
...  

2019 ◽  
Vol 30 (1) ◽  
pp. 487-500 ◽  
Author(s):  
J. Greffier ◽  
J. Frandon ◽  
A. Larbi ◽  
J. P. Beregi ◽  
F. Pereira

Sign in / Sign up

Export Citation Format

Share Document