scholarly journals The cardioprotective effect of intralipid in decreasing the ischemic insults during off-pump coronary artery revascularization

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maha Sadek El Derh ◽  
Samar Mohamed Abdel Twab ◽  
Mohamed Elgouhary

Abstract Background Off pump coronary artery revascularization (OPCAB) surgeries have benefits over the conventional on pump cardiac surgery, because it avoids the trauma caused by cardiopulmonary bypass (CPB) and minimize aortic manipulation. However, some disadvantages of OPCAB include the concern of ineffective coronary revascularization. Some drugs have shown the ability to protect the myocardium in different studies, by different methods. The usage of intralipid has been shown to make a better functional recovery of the cardiac muscles and help to decrease the myocardial infarct size, it shortens the action potential time, which show polyunsaturated fatty acids diets mechanism as an antiarrhythmic drug, and are associated with low incidence of coronary artery disease. Methods We divided patients into two groups according to the randomization envelopes: intralipid group (group A) received 1.5 ml/kg intralipid 20% through central venous line after sternotomy over 1 h and during infusion, blood pressure, heart rate, and temperature were monitored all through the infusion time. Control group (group B) received normal saline 0.9% in the same volume over the same duration. Results This study showed that infusion of 1.5 ml/kg intralipid after sternotomy in off pump coronary artery revascularization given as preconditioning agent improve the myocardial ischemia reperfusion injury, decrease the need for high doses of nor adrenaline infusion after revascularization, earlier normalization in troponin levels starting 24 h after surgery and higher values of cardiac index were measured in ICU using PICCO. Conclusions This study showed the benefits of infusion of 1.5 ml/kg of intralipid after sternotomy, in preconditioning during OPCABG. Preconditioning with intralipid proved to decrease reperfusion injury in myocardium expressed by improvement in cardiac functions (EF and cardiac index) and normalization of specific cardiac marker (cardiac troponin I).

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jingyuan Li ◽  
Negar Motayagheni ◽  
Neusha Barakati ◽  
Mansoureh Eghbali

The prevalence of coronary artery disease in late pregnancy (LP) has increased recently due to significant changes in women’s lifestyle patterns (age, stress, smoking, diabetes and chronic hypertension). Myocardial infarction during LP and the peripartum is associated with significant maternal mortality and morbidity compared to non pregnant women for unclear reasons. We have recently demonstrated that cardiac vulnerability to I/R injury drastically increases in LP rodents, leading to myocardial infarct size ~4 fold greater than in non-pregnant controls. We also discovered that administration of intralipid (an emulsion of soy bean oil, egg yolk phospholipids and glycerol) at reperfusion resulted in ~60% reduction in infarct size of the heart in LP rat subjected to I/R injury. However, the molecular mechanisms underlying intralipid-induced cardioprotection in late pregnancy is not clear. Here we hypothesized that intralipid protects the heart in late pregnancy by regulating the levels of specific microRNAs. The left anterior descending coronary artery was occluded in LP rats (21-22 days of pregnancy) for 45 min followed by 3 hr of reperfusion. One single bolus of PBS (control group) or 20% intralipid (intralipid group) was applied through the femoral vein 5 min before the reperfusion. The hearts of control and intralipid groups were used for microRNA microarray analysis (Ocean Ridge Biosciences). MicroRNA-microarray analysis identified MiR122 as a novel micro-RNA which its expression was strikingly upregulated more than 10 fold in the heart of LP rats in intralipid group compared to control group. miR122 regulates apoptosis in cardiomyocytes subjected to hypoxia/reoxygenation since miR122-overexpression resulted in reduced apoptosis, whereas knockdown of miR122 enhanced apoptosis. Pyruvate kinase isoform M2 (PKM2), which is known to regulate cell apoptosis in the liver, is a direct target of miR122. Our data show that PKM2 and caspase 3 are two targets of miR122 since the expression of PKM2 and capase-3 in the heats subjected to I/R was significantly lower in intralipid group compared to control group in LP. In conclusion intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via inducing miR122 by targeting PKM2.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Chelsea Organ ◽  
Zhen Li ◽  
Yu Zhao ◽  
Chuntao Yang ◽  
Shashi Bhushan ◽  
...  

Background: Hydrogen sulfide (H2S) protects against acute myocardial ischemia/reperfusion (MI/R) injury and heart failure by ameliorating oxidative stress, improving mitochondrial function, and attenuating apoptosis. One of the major limitations of currently available H2S donors is poor pharmacokinetics profiles that result in very rapid and uncontrolled H2S release. NSHD-1 and NSHD-2 are recently developed thiol-activated H2S donors designed for sustained release of H2S upon activation by molecules containing thiol groups such as cysteine and glutathione. We hypothesized that these novel H2S donors would generate H2S for extended periods and ameliorate myocardial cell death following MI/R in an in vivo murine model. Methods and Results: C57BL6/J male mice (10-12 weeks of age) were subjected to 45 minutes of MI followed by 24 hours of R. At the time of reperfusion, animals received Vehicle (0.5% THF), NSHD-1 (50 μg/kg and 100 μg/kg), or NSHD-2 (50 μg/kg) by direct intracardiac (i.c.) injection. In addition, at 4 hours of R, plasma was collected for troponin-I measurements. In preliminary studies we observed sustained release of H2S with both of these H2S donors. Myocardial infarct size was reduced by 35% (p < 0.01 vs. Vehicle) in mice treated with NSHD-1 (100 μg/kg), 43% (p < 0.05 vs. Vehicle) in mice treated with NSHD-2 (50 μg/kg), and 54% (p < 0.01 vs. Vehicle) in mice treated with NSHD-2 (100 μg/kg). Conclusions: NSHD-1 and NSHD-2 significantly attenuate MI/R injury in a murine model. Experiments are currently underway to further define the in vivo pharmacokinetics of H2S release from these agents, mechanisms of action, and safety profile.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Najah R. Hadi ◽  
Fadhil Al-amran ◽  
Maitham Yousif ◽  
Suhaad T. Zamil

Background. Myocardial ischemial reperfusion represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. Injury of myocardium due to ischemial reperfusion includes cardiac contractile dysfunction, arrhythmias, and irreversible myocytes damage. These changes are considered to be the consequence of imbalance between the formation of oxidants and the availability of endogenous antioxidants in the heart. Objective. This study was undertaken to investigate the potential role of Simvastatin in the amelioration of myocardial I/R injury induced by ligation of coronary artery in a rat model. Materials and Methods. Adult male Swiss Albino rats were randomized into 4 equal groups. Group (1): sham group: rats underwent the same anesthetic and surgical procedures as those in the control group except ligation of LAD coronary artery, group (2): control group: rats were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (3): control vehicle group: rats received vehicle of Simvastatin (normal saline) via IP injection and were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (4): Simvastatin treated group: rats were pretreated with Simvastatin 1 mg/kg i.p. 1 hr before ligation of LAD coronary artery. At the end of experiment (2 hr of reperfusion), blood samples were collected from the heart for the measurement of plasma level of cardiac troponin I (cTnI). After that the heart was harvested and divided into 3 parts; one part was used for measurement of apoptosis, another part was homogenized for the measurement of tissue tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α, and the last part for histopathology study. Results. Compared with the sham group, levels of myocardial TNF-α and IL-1β, IL-6, MCP-1, and MIP-1α and plasma cTnI were increased (P<0.05). Histologically, all rats in control group showed significant (P<0.05) cardiac injury. Furthermore, all rats in control group showed significant (P<0.05) apoptosis. Simvastatin significantly counteracted the increase in myocardium level of TNF-α, IL-1B, IL-6, MCP-1 and MIP-1α, plasma cTnI, and apoptosis (P< 0.05). Histological analysis revealed that Simvastatin markedly reduced (P< 0.05) the severity of heart injury in the rats that underwent LAD ligation procedure. Conclusions. The results of the present study reveal that Simvastatin may ameliorate myocardial I/R injury in rats via interfering with inflammatory reactions and apoptosis which were induced by I/R injury.


2018 ◽  
Vol 45 (5) ◽  
pp. 2107-2121 ◽  
Author(s):  
Chunyan Wang ◽  
Haobo Li ◽  
Sheng Wang ◽  
Xiaowen Mao ◽  
Dan Yan ◽  
...  

Background/Aims: Protein kinase C(PKC)-ε activation is a mechanism of preconditioning cardioprotection but its role in repeated non-invasive limb ischemic preconditioning (rNLIP) mediated cardioprotection against myocardial ischemia/reperfusion (I/R) injury in diabetes is unknown. Methods: Eight-week streptozotocin-induced diabetic and non-diabetic Sprague-Dawley rats were subjected to I/R without or with rNLIP. In vitro, H9C2 cells were cultured with high glucose (HG) and subjected to hypoxia/re-oxygenation (H/R) without or with PKC-ε or STAT3 gene knock-down in the absence or presence of remote time hypoxia preconditioning (HPC). Results: Diabetic rats displayed larger post-ischemic myocardial infarct size and higher troponin-I release with concomitant cardiac PKC-ԑ overexpression and activation manifested as increased membrane translocation, while phosphorylated STAT3 (p-STAT3) and Akt (p-Akt) were lower compared to non-diabetic rats (all P<0.05). rNLIP reduced infarct size in both non-diabetic and diabetic rats. rNLIP reduced post-ischemic cardiac PKC-ԑ activation in diabetic while increased PKC-ԑ activation in non-diabetic rats, resulting in increased cardiac p-STAT3 and p-Akt. In H9C2 cells, HG increased PKC-ԑ expression and exacerbated post-H/R injury, accompanied with reduced p-STAT3 and p-Akt, which were all reverted by HPC. These HPC protective effects were abolished by either PKC-ԑ or STAT3 gene knock-down, except that PKC-ԑ gene knock-down reverted HG and H/R-induced reduction of p-STAT3. Conclusion: rNLIP attenuates diabetic heart I/R injury by mitigating HG-induced PKC-ԑ overexpression and, subsequently, activating STAT3.


2014 ◽  
Vol 2 (2) ◽  
pp. 87-97

Ischemia-reperfusion of cardiac tissues may lead to a prominent damage of the myocyte through either necrosis or apoptosis that seems to be the predominant modes of death during this period. In this study, we investigated the effects of L-Methionine in regional ischemia/ reperfusion injury and apoptosis. Dwale-sprague rats were divided into four groups (six rats per group). Sham group, rats were subjected for all surgical procedure without ligation of the left interior descending coronary artery (LAD). Control group, in which LAD was ligated. Control vehicle and L-methionine treated groups, rats pretreated with normal saline and L-methionine (100 mg/kg, IP ), respectively, for 7 days then subjected to the surgical procedure with ligation of LAD for 25 minutes followed by 120 minutes reperfusion. At the end of reperfusion, cardiac tissue TNF-α, IL-1β, IL-6 and ssDNA, as well as plasma cardiac troponin I (cTnI) were measured. It has been found that L-methionine treated group showed significant reduction (P˂0.05) in TNFα, IL-1β, IL-6, ssDNA and cTnI with respect to the control groups. Histopathology study revealed that the treatment with L-methionine significantly (P˂0.05) improved cardiac injury as compared with control groups and the total severity scores showed that the cardiac injury was mild (score 1) in 50.0%, moderate (score 2) in 33.3% and sever (score 3) in 16.7% of L-methionine treated group. It is concluded that L-methionine reduces inflammatory reaction associated with ischemia/reperfusion injury induced by LAD ligation in addition to its reduction for cardiac injury induced by ischemia reperfusion.


2006 ◽  
Vol 290 (2) ◽  
pp. H500-H505 ◽  
Author(s):  
Kasem Nithipatikom ◽  
Michael P. Endsley ◽  
Jeannine M. Moore ◽  
Marilyn A. Isbell ◽  
John R. Falck ◽  
...  

Cytochrome P-450 (CYP) ω-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP ω-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP ω-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control [19.5 ± 1.0% (control), 9.6 ± 1.5% (0.40 mg/kg DDMS), 4.0 ± 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6( Z),15( Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control [10.3 ± 1.3% (0.032 mg/kg 20-HEDE) and 5.9 ± 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction [9.9 ± 2.8% (IPC) to 2.5 ± 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP ω-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP ω-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document