pyrroloquinoline quinone
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 93)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
Li Qian ◽  
Fei Yang ◽  
Xinhui Lin ◽  
Su Jiang ◽  
Yun Zhang ◽  
...  

Author(s):  
Xue-feng Qu ◽  
Bing-zhong Zhai ◽  
Wen-li Hu ◽  
Min-han Lou ◽  
Yi-hao Chen ◽  
...  

Abstract Purpose Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus and is characterized by myocardial hypertrophy and myocardial fibrosis. Pyrroloquinoline quinone (PQQ), a natural nutrient, exerts strong protection against various myocardial diseases. Pyroptosis, a type of inflammation-related programmed cell death, is vital to the development of DCM. However, the protective effects of PQQ against DCM and the associated mechanisms are not clear. This study aimed to investigate whether PQQ protected against DCM and to determine the underlying molecular mechanism. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin, after which the mice were administered PQQ orally (10, 20, or 40 mg/kg body weight/day) for 12 weeks. AC16 human myocardial cells were divided into the following groups and treated accordingly: control (5.5 mmol/L glucose), high glucose (35 mmol/L glucose), and HG + PQQ groups (1 and 10 nmol/L PQQ). Cells were treated for 24 h. Results PQQ reduced myocardial hypertrophy and the area of myocardial fibrosis, which was accompanied by an increase in antioxidant function and a decrease in inflammatory cytokine levels. Moreover, myocardial hypertrophy—(ANP and BNP), myocardial fibrosis—(collagen I and TGF-β1), and pyroptosis-related protein levels decreased in the PQQ treatment groups. Furthermore, PQQ abolished mitochondrial dysfunction and the activation of NF-κB/IκB, and decreased NLRP3 inflammation-mediated pyroptosis in AC16 cells under high-glucose conditions. Conclusion PQQ improved DCM in diabetic mice by inhibiting NF-κB/NLRP3 inflammasome-mediated cell pyroptosis. Long-term dietary supplementation with PQQ may be greatly beneficial for the treatment of DCM. Graphical abstract Diagram of the underlying mechanism of the effects of PQQ on DCM. PQQ inhibits ROS generation and NF-κB activation, which stimulates activation of the NLRP3 inflammasome and regulates the expression of caspase-1, IL-1β, and IL-18. The up-regulated inflammatory cytokines trigger myocardial hypertrophy and cardiac fibrosis and promote the pathological process of DCM.


2022 ◽  
Vol 70 (1) ◽  
pp. 32-36
Author(s):  
Mizuho Fukuda ◽  
Naoya Kishikawa ◽  
Taketo Samemoto ◽  
Kaoru Ohta ◽  
Kaname Ohyama ◽  
...  

Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Hui Gao ◽  
Jiafeng Niu ◽  
Hua Yang ◽  
Zhaoxin Lu ◽  
Libang Zhou ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by several Fusarium species that is hazardous to humans and animals after entering food chains. In this study, by adding cofactors, the Devosia strain A6-243 is identified as the DON-transforming bacteria from a bacterial consortium with the ability to biotransform DON of Pseudomonas sp. B6-24 and Devosia strain A6-243, and its effect on the biotransformation process of DON is studied. The Devosia strain A6-243 completely biotransformed 100 μg/mL of DON with the assistance of the exogenous addition of PQQ (pyrroloquinoline quinone) within 48 h and produced non-toxic 3-epi-DON (3-epi-deoxynivalenol), while Pseudomonas sp. B6-24 was not able to biotransform DON, but it had the ability to generate PQQ. Moreover, the Devosia strain A6-243 not only degraded DON, but also exhibited the ability to degrade 3-keto-DON (3-keto-deoxynivalenol) with the same product 3-epi-DON, indicating that DON epimerization by the Devosia strain A6-243 is a two-step enzymatic reaction. The most suitable conditions for the biodegradation process of the Devosia strain A6-243 were a temperature of 16–37 °C and pH 7.0–10, with 15–30 μM PQQ. In addition, the Devosia strain A6-243 was found to completely remove DON (6.7 μg/g) from DON-contaminated wheat. The results presented a reference for screening microorganisms with the ability of biotransform DON and laid a foundation for the development of enzymes for the detoxification of mycotoxins in grain and its products.


2021 ◽  
pp. 1-10
Author(s):  
Reham M. Abdel-Kader ◽  
Engy A Fadel ◽  
Reham M. Abdel-Kader

Background: Mitochondrial biogenesis has been recently implicated to play an important role in Alzheimer’s disease (AD). Recently it has been reported that brains of AD patients show reduced expression in major genes and proteins such as PGC-1α involved in mitochondrial biogenesis. This led to the idea that enhancing mitochondrial biogenesis in AD, might represent a plausible strategy for AD treatment. Pyrroloquinoline quinone (PQQ) has been recently implicated in enhancing cognitive functions during aging; however, its effect on mitochondrial biogenesis in neuroinflammatory AD mouse model was not previously examined. Objective: The aim of this project was to test the cognitive enhancement effect of PQQ in a neuroinflammatory mouse model mimicking AD, and whether PQQ is able to activate mitochondrial biogenesis in brains of our AD mouse model. Methods: Neuroinflammatory AD mouse model was developed by Lipopolysaccharide (250 g kg-1 body weight, i.p) injection for 7 days, followed by daily PQQ treatment (10 mg kg-1 body weight) on days 4-7. Cognitive functions were assessed using Y-Maze, Water-Maze and object recognition tests. Neurodegeneration was evaluated using H&E. Finally, mitochondrial proteins were measured using immunohistochemistry. Results: PQQ treatment improved spatial recognition and working memory. PQQ treated mice brains showed decreased levels of neurodegeneration. Moreover, their brains showed greater amounts of both PGC-1α and the mitochondrial-membrane-bound protein cytochrome-c, indicating enhancement of mitochondrial biogenesis. Conclusion: This study demonstrates the ability of PQQ to improve memory in neuroinflammatory AD model via enhancing mitochondrial biogenesis, which may represent an alternative mechanistic approach for treating AD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexa M. Schmitz ◽  
Brooke Pian ◽  
Sean Medin ◽  
Matthew C. Reid ◽  
Mingming Wu ◽  
...  

AbstractBioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1441
Author(s):  
Karen R. Jonscher ◽  
Winyoo Chowanadisai ◽  
Robert B. Rucker

Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin–related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ’s role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ’s actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ’s modulation of lactate acid and perhaps other dehydrogenases enhance NAD+–dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.


Sign in / Sign up

Export Citation Format

Share Document