scholarly journals Expression of a cucumber alanine aminotransferase2 gene improves nitrogen use efficiency in transgenic rice

Author(s):  
Atmitri Sisharmini ◽  
Aniversari Apriana ◽  
Nurul Khumaida ◽  
Kurniawan Rudi Trijatmiko ◽  
Bambang Sapta Purwoko

Abstract Background Rice can absorb less than 40% of applied nitrogen fertilizer, whereas the unabsorbed nitrogen fertilizer may cause environmental problems, such as algal blooms in freshwater and increased production of nitrous oxide, a greenhouse gas which is 300 times more potent than carbon dioxide. Development of nitrogen use efficient (NUE) rice is essential for more environmentally friendly rice production. Recently, NUE rice has been developed by root-specific expression of alanine aminotransferase (AlaAT) gene from barley, a monocot plant. Therefore, we tested the efficacy of AlaAT gene from cucumber in transgenic rice, aiming to provide evidence for the conservation of AlaAT gene function in monocot and dicot. Results AlaAT gene from cucumber (CsAlaAT2) has been successfully cloned and constructed on pCAMBIA1300 plant expression vectors under the control of tissue-specific promoter OsAnt1. Agrobacterium tumefaciens-mediated transformation of Indonesian rice cv. Fatmawati using this construct produced 14 transgenic events. Pre-screening of T1 seedlings grown in the agar medium containing low nitrogen concentration identified selected events that were superior in the root dry weight. Southern hybridization confirmed the integration of T-DNA in the selected event genomes, each of them carried 1, 2, or 3 T-DNA insertions. Efficacy assay of three lead events in the greenhouse showed that in general transgenic events had increased biomass, tiller number, nitrogen content, and grain yield compared to WT. One event, i.e., FAM13, showed an increase in yield as much as 27.9% and higher plant biomass as much as 27.4% compared to WT under the low nitrogen condition. The lead events also showed higher absorption NUE, agronomical NUE, and grain NUE as compared to WT under the low nitrogen condition. Conclusions The results of this study showed that root-specific expression of cucumber alanine aminotransferase2 gene improved nitrogen use efficiency in transgenic rice, which indicate the conservation of function of this gene in monocot and dicot.

Botany ◽  
2013 ◽  
Vol 91 (12) ◽  
pp. 866-883 ◽  
Author(s):  
Perrin H. Beatty ◽  
Rebecka T. Carroll ◽  
Ashok K. Shrawat ◽  
David Guevara ◽  
Allen G. Good

Cereal crop plants have low nitrogen (N) use efficiency, taking up only 30% to 50% of the applied N fertilizers, with the rest having the potential for loss into the environment as N pollution. One way to address this problem is to improve the nitrogen use efficiency of cereal crops using a transgenic approach. We developed alanine aminotransferase overexpressing rice, and we have previously determined that this modification provided an improved nitrogen-use phenotype to the engineered plants. In this study, the transgenic rice were grown in low, medium, and high nitrogen supply, and morphology, plant N levels, enzymatic activity, metabolite levels, and transcriptome response in the roots and shoots at active and maximum tillering at each N level were measured. The transcriptome response was analysed further using MapMan and PageMan to view multiple comparisons. The transgenic rice plants showed improved nitrogen use efficiency at medium and high N supply, but with few significant changes to the amino acid levels or to the transcriptome. The transgenic plants grown in high N showed up-regulation of transcripts associated with photosynthesis, non-melavonate pathway secondary metabolites, protein degradation, and many unknown function transcripts.


Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Qinjun Huang ◽  
Changjun Ding ◽  
Weixi Zhang ◽  
...  

AbstractIt is important to evaluate nitrogen use efficiency and nitrogen tolerance of trees in order to improve their productivity. In this study, both were evaluated for 338 Populus deltoides genotypes from six provenances. The plants were cultured under normal nitrogen (750 μM NH4NO3) and low nitrogen (5 μM NH4NO3) conditions for 3 months. Growth, chlorophyll content and glutamine synthetase activity of each genotype were measured. Under low nitrogen, heights, ground diameter, leaf area, leaf and root biomass, and chlorophyll contents were significantly lower than those under normal nitrogen level. Correlation analysis showed that nutrient distribution changed under different nitrogen treatments. There was a negative correlation between leaf traits and root biomass under normal nitrogen level, however, the correlation became positive in low nitrogen treatment. Moreover, with the decrease of nitrogen level, the negative correlation between leaf morphology and chlorophyll levels became weakened. The growth of the genotypes under the two treatments was evaluated by combining principal component analysis with a fuzzy mathematical membership function; the results showed that leaf traits accounted for a large proportion of the variation in the evaluation model. According to the results of comprehensive evaluation of plants under the two treatments, the 338 P. deltoides genotypes could be divided into nine categories, with wide genotypic diversity in nitrogen use efficiency and low nitrogen tolerance. As a result, 26 N-efficient genotypes and 24 N-inefficient genotypes were selected. By comparative analysis of their morphological and physiological traits under the two treatments, leaf traits could be significant indicators for nitrogen use efficiency and nitrogen tolerance, which is of considerable significance for breeding poplar varieties with high nitrogen use efficiencies.


2022 ◽  
Vol 278 ◽  
pp. 108430
Author(s):  
Olusegun Idowu ◽  
Yuanzheng Wang ◽  
Koki Homma ◽  
Tetsuya Nakazaki ◽  
Zhengjin Xu ◽  
...  

Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. eaaz2046 ◽  
Author(s):  
Kun Wu ◽  
Shuansuo Wang ◽  
Wenzhen Song ◽  
Jianqing Zhang ◽  
Yun Wang ◽  
...  

Because environmentally degrading inorganic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced nitrogen use efficiency. We found that genome-wide promotion of histone H3 lysine 27 trimethylation (H3K27me3) enables nitrogen-induced stimulation of rice tillering: APETALA2-domain transcription factor NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) facilitates nitrogen-dependent recruitment of polycomb repressive complex 2 to repress branching-inhibitory genes via H3K27me3 modification. NGR5 is a target of gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1)–promoted proteasomal destruction. DELLA proteins (characterized by the presence of a conserved aspartate-glutamate-leucine-leucine-alanine motif) competitively inhibit the GID1-NGR5 interaction and explain increased tillering of green revolution varieties. Increased NGR5 activity consequently uncouples tillering from nitrogen regulation, boosting rice yield at low nitrogen fertilization levels. NGR5 thus enables enhanced nitrogen use efficiency for improved future agricultural sustainability and food security.


2019 ◽  
Vol 67 (24) ◽  
pp. 6736-6747 ◽  
Author(s):  
Zhimin Wu ◽  
Jinsong Luo ◽  
Yongliang Han ◽  
Yingpeng Hua ◽  
Chunyun Guan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nidhi Gupta ◽  
Atul K. Gupta ◽  
Vikram S. Gaur ◽  
Anil Kumar

Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.


Sign in / Sign up

Export Citation Format

Share Document