polycomb repressive complex 2
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 224)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Anna S. Nam ◽  
Neville Dusaj ◽  
Franco Izzo ◽  
Rekha Murali ◽  
Robert M. Myers ◽  
...  

Somatic mutations in cancer genes have been ubiquitously detected in clonal expansions across healthy human tissue, including in clonal hematopoiesis. However, mutated and wildtype cells are morphologically and phenotypically similar, limiting the ability to link genotypes with cellular phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, capturing the mutation with transcriptomes and methylomes in stem and progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations resulted in myeloid over lymphoid bias, and in expansion of immature myeloid progenitors primed toward megakaryocytic-erythroid fate. We observed dysregulated expression of lineage and leukemia stem cell markers. DNMT3A R882 led to preferential hypomethylation of polycomb repressive complex 2 targets and a specific sequence motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic link between DNMT3A R882 mutations and aberrant transcriptional phenotypes. Thus, single-cell multi-omics pave the road to defining the downstream consequences of mutations that drive human clonal mosaicism.


2022 ◽  
Author(s):  
José Díaz-Chávez ◽  
Olga Gutiérrez-Hernández ◽  
Lucia Taja-Chayeb ◽  
Sindy Gutiérrez-Chavarría ◽  
Alejandro Aviles-Salas ◽  
...  

Abstract Background: The epigenetic regulator EZH2 is a subunit of the polycomb repressive complex 2 (PRC2), methylates H3K27, resulting in transcriptional silencing. The mutation at Y646 amino acid in the EZH2 gene is mutated in up to 40 % of B-cell lymphomas. Methods: We compared the presence of exon 16 EZH2 mutations in tumor samples and ctDNA in a prospective trial. The mutations were determined by sanger sequencing, and by ddPCR. We also evaluated the impact of these mutations on response, relapse, and survival. Results: One hundred and thirty-eight cases were included. Ninety-eight were germinal center, and twenty had EZH2 mutations. Mean follow-up (IQR 25-75) was 23 (7- 42) months. The tumor samples were considered the standard of reference. Considering the results of the mutation in ctDNA by Sanger sequencing, the sensibility (Se) and specificity (Sp) were 52 % and 99 %, respectively. After adding the ddPCR analysis, the Se and Sp increased to 95 and 100 %, respectively. After bivariate analysis, only the presence of double-hit lymphoma (p=0.04), or EZH2 mutations were associated with relapse. The median PFS (95 % Interval confidence) was 27.7 (95 % IC: 14-40) vs 44.1 (95 % IC: 40-47.6) months for the mutated vs wt patients. Conclusions: The ctDNA is usefull to analyse EZH2 mutations, which have an impact in PFS.


2022 ◽  
Author(s):  
Sumera Perveen ◽  
Carlos A Zepeda-Velazquez ◽  
David McLeod ◽  
Richard Marcellus ◽  
Mohammed Mohammed ◽  
...  

RBBP4 is a nuclear WD40 motif-containing protein widely implicated in various cancers and a putative drug target. It interacts with multiple proteins within diverse complexes such as nucleosome remodeling and deacetylase (NuRD) complex and polycomb repressive complex 2 (PRC2), as well as histone H3 and H4 through two distinct binding sites. B-cell lymphoma/leukemia 11A (BCL11A), friend of GATA-1 (FOG-1), plant homeodomain finger protein 6 (PHF6) and histone H3 bind to the top of the donut-shaped seven-bladed β-propeller fold of RBBP4, while suppressor of zeste 12 (SUZ12), metastasis associated protein 1 (MTA1) and histone H4 bind to a pocket on the side of the WD40 repeats of this protein. Here, we report the discovery of the first small molecule antagonists of the RBBP4 top pocket, competing with interacting peptides from proteins such as BCL11A and histone H3. We also determined the first crystal structure of RBBP4 in complex with a small molecule (OICR17251), paving the path for structure-guided design and optimization towards more potent antagonists.


2021 ◽  
Vol 119 (1) ◽  
pp. e2116222119
Author(s):  
Alexey A. Gavrilov ◽  
Rinat I. Sultanov ◽  
Mikhail D. Magnitov ◽  
Aleksandra A. Galitsyna ◽  
Erdem B. Dashinimaev ◽  
...  

Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA–DNA proximity ligation techniques has been developed. However, neither of these techniques examines proteins involved in RNA–chromatin interactions. Here, we introduce RedChIP, a technique combining RNA–DNA proximity ligation and chromatin immunoprecipitation for identifying RNA–chromatin interactions mediated by a particular protein. Using antibodies against architectural protein CTCF and the EZH2 subunit of the Polycomb repressive complex 2, we identify a spectrum of cis- and trans-acting ncRNAs enriched at Polycomb- and CTCF-binding sites in human cells, which may be involved in Polycomb-mediated gene repression and CTCF-dependent chromatin looping. By providing a protein-centric view of RNA–DNA interactions, RedChIP represents an important tool for studies of nuclear ncRNAs.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 83
Author(s):  
Jinmi Yoon ◽  
Hee-Joong Jeong ◽  
Gibeom Baek ◽  
Jungil Yang ◽  
Xin Peng ◽  
...  

In chromatin remodeling, the post-translational modification of histone proteins is mediated by multimeric protein complexes. VERNALIZATION INSENSITIVE3 (VIN3) forms a complex with Polycomb Repressive Complex 2 (PRC2), which mediates the trimethylation of H3K27 to repress target gene expression. In rice, four genes (OsVIL1-OsVIL4) encoding the VIN3-like proteins are expressed ubiquitously in various tissues. Null mutants of osvil2 display pleiotropic phenotypes such as altered flowering time, floral organ defects, and reduced tiller size. In contrast, osvil1 mutants did not show significant phenotypes except in fertilization compared with the wild type. However, transgenic plants overexpressing OsVIL1 showed phenotypes of increased biomass and grain yield. Cross-sections of the basal region of elongating stems revealed that the increased biomass was mediated by inducing cell proliferation in the meristem. Chromatin immunoprecipitation assay indicated that OsVIL1 repressed expression of cytokinin oxidase/dehydrogenase gene (OsCKX2) by binding to the promoter and genic regions of OsCKX2. We also observed that OsVIL1 modified the levels of H3K27me3 in the OsCKX2 chromatin. Because OsCKX2 encodes an enzyme that degrades active cytokinin, we conclude that OsVIL1 functions in the regulation of endogenous active cytokinin levels, thereby increasing plant height and productivity.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009948
Author(s):  
Pooja Flora ◽  
Meng-Yen Li ◽  
Phillip M. Galbo ◽  
Maider Astorkia ◽  
Deyou Zheng ◽  
...  

Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.


Author(s):  
Hussein Ghamlouch ◽  
Eileen M. Boyle ◽  
Patrick Blaney ◽  
Yubao Wang ◽  
Jinyoung Choi ◽  
...  

AbstractDespite  improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.


2021 ◽  
Author(s):  
Gamze Kuser Abali ◽  
Fumihito Noguchi ◽  
Pacman Szeto ◽  
Youfang Zhang ◽  
Cheng Huang ◽  
...  

Abstract The enhancer of zeste homolog 2 (EZH2) oncogene is a histone methyltransferase that functions canonically as a catalytic subunit of the polycomb repressive complex 2 (PRC2) to tri-methylate histone H3 at Lys 27 (H3K27me3). Although targeting of EZH2 methyltransferase is a promising therapeutic strategy against cancer, methyltransferase-independent oncogenic functions of EZH2 are also described. Moreover, pharmacological EZH2 methyltransferase inhibition was only variably effective in pre-clinical and clinical studies, suggesting that targeting EZH2 methyltransferase alone may be insufficient. Here, we demonstrate a non-canonical mechanism of EZH2’s oncogenic activity through interactions with inosine monophosphate dehydrogenase 2 (IMPDH2) and downstream promotion of guanosine-5'-triphosphate (GTP) production. Liquid Chromatography-Mass Spectrometry (LC-MS) of EZH2 immunoprecipitates from melanoma cell lines and human patient-derived xenografts (PDXs) revealed EZH2-IMPDH2 interactions that were verified to occur between the N-terminal EED-binding domain of cytosolic EZH2 and the CBS domain of IMPDH2 in a PRC2- and methylation-independent manner. EZH2 silencing reduced cellular GTP, ribosome biogenesis, RhoA-mediated actomyosin contractility and melanoma cell proliferation and invasion by impeding the activity and cytosolic localization of IMPDH2. Guanosine, which replenishes GTP, reversed these effects and thereby promoted invasive and clonogenic cell states even in EZH2 silenced cells. IMPDH2 silencing antagonized the proliferative and invasive effects of EZH2, also in a guanosine-reversible manner. In human melanomas, high cytosolic EZH2 and IMPDH2 expression were associated with nucleolar enlargement, a marker for ribosome biogenesis. We also identified EZH2-IMPDH2 complexes in a range of cancers in which Sappanone A (SA), which inhibits EZH2-IMPDH2 interactions and thereby IMPDH2 tetramerization, was anti-tumorigenic, although notably non-toxic in normal human melanocytes and bone marrow derived blood progenitor cells that lacked observable EZH2-IMPDH2 interactions. These findings illuminate a previously unrecognized, non-canonical, methyltransferase-independent, but GTP-dependent mechanism by which EZH2 regulates tumorigenicity in melanoma and other cancers, opening new avenues for development of anti-EZH2 therapeutics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chet H. Loh ◽  
Siebe van Genesen ◽  
Matteo Perino ◽  
Magnus R. Bark ◽  
Gert Jan C. Veenstra

AbstractPolycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. Two distinct PRC2 complexes, PRC2.1 and PRC2.2, contain respectively MTF2 and JARID2 in embryonic stem cells (ESCs). In this study, we explored their roles in lineage specification and commitment, using single-cell transcriptomics and mouse embryoid bodies derived from Mtf2 and Jarid2 null ESCs. We observe that the loss of Mtf2 results in enhanced and faster differentiation towards cell fates from all germ layers, while the Jarid2 null cells are predominantly directed towards early differentiating precursors, with reduced efficiency towards mesendodermal lineages. These effects are caused by derepression of developmental regulators that are poised for activation in pluripotent cells and gain H3K4me3 at their promoters in the absence of PRC2 repression. Upon lineage commitment, the differentiation trajectories are relatively similar to those of wild-type cells. Together, our results uncover a major role for MTF2-containing PRC2.1 in balancing poised lineage-specific gene activation, whereas the contribution of JARID2-containing PRC2 is more selective in nature compared to MTF2. These data explain how PRC2 imposes thresholds for lineage choice during the exit of pluripotency.


Author(s):  
Sharan K. Bagal ◽  
Clare Gregson ◽  
Daniel H. O’ Donovan ◽  
Kurt G. Pike ◽  
Andrew Bloecher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document