scholarly journals Saccharomyces cerevisiae ER membrane protein complex subunit 4 (EMC4) plays a crucial role in eIF2B-mediated translation regulation and survival under stress conditions

Author(s):  
Sonum Sharma ◽  
Anuradha Sourirajan ◽  
David J. Baumler ◽  
Kamal Dev
2018 ◽  
Vol 132 (2) ◽  
pp. jcs223453 ◽  
Author(s):  
Norbert Volkmar ◽  
Maria-Laetitia Thezenas ◽  
Sharon M. Louie ◽  
Szymon Juszkiewicz ◽  
Daniel K. Nomura ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 1666-1674.e4 ◽  
Author(s):  
David L. Lin ◽  
Takamasa Inoue ◽  
Yu-Jie Chen ◽  
Aaron Chang ◽  
Billy Tsai ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 624 ◽  
Author(s):  
Jeremy G. Wideman

The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.


2020 ◽  
Vol 130 (2) ◽  
pp. 813-826 ◽  
Author(s):  
Jonathan Marquez ◽  
June Criscione ◽  
Rebekah M. Charney ◽  
Maneeshi S. Prasad ◽  
Woong Y. Hwang ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 624 ◽  
Author(s):  
Jeremy G. Wideman

The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238435
Author(s):  
Xiong Zhu ◽  
Xin Qi ◽  
Yeming Yang ◽  
Wanli Tian ◽  
Wenjing Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document