Seismic velocities in transversely isotropic media

Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 918-936 ◽  
Author(s):  
Franklyn K. Levin

When a sedimentary earth section is layered on a scale much finer than the wavelength of seismic waves, the waves average the physical properties of the layers; a seismic wave acts as if it were traveling in a single, transversely isotropic solid. We compute the velocities with which P‐waves, SV‐waves, and SH‐waves travel in transversely isotropic solids formed from two‐component solids and find the corresponding moveout velocities from [Formula: see text] plots. The combinations studied are sandstone and shale, shale and limestone, water sand and gas sand, and gypsum and unconsolidated material, one set of typical physical properties being selected for each component of a combination. A reflector at 1524 m and a geophone spread of 0–3048 m are assumed. The moveout velocity for an SH‐wave is always the velocity for a wave traveling in the horizontal direction. The P‐wave moveout velocity found from surface seismic data can be anywhere from the vertical P‐wave velocity to values between those for vertical and horizontal travel; the actual value depends on the elastic parameters and the spread length used for velocity determination. If the two components of the solid have the same Poisson’s ratio, the velocity from surface‐recorded data is the vertical P‐wave velocity. For this case, SH‐wave anisotropy can be computed. SV‐wave data usually do not have hyperbolic time‐distance curves, and the moveout velocity found varies with spread length. Surprisingly, the water sand‐gas sand combination gives a medium with negligible anistropy. A two‐component combination of gypsum in weathered material gives rise to [Formula: see text] plots that seem to explain the unusual behavior of near‐surface SV‐waves seen in field studies reported by Jolly (1956).

Geophysics ◽  
1980 ◽  
Vol 45 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Franklyn K. Levin

P‐wave, SV‐wave, and SH‐wave velocities are computed for transversely isotropic solids formed from two isotropic solids. The combinations are shale‐sandstone and shale‐limestone solids of an earlier paper (Levin, 1979), but one velocity of the nonshale component is allowed to vary over the range of Poisson’s ratios σ = 0 to σ = 0.45, i.e., from a rigid solid to a near‐liquid. When the S‐wave velocity of either the sandstone or limestone is varied, the ratio of horizontal P‐wave velocity to vertical P‐wave velocity goes through a maximum as σ increases and subsequently falls to values less than unity as σ approaches 0.5. The P‐wave velocity that would be found with a short surface spread also goes through a maximum and, at σ = 0.5, is less than the P‐wave velocity of either isotropic component. SV‐wave velocities found for data from a short spread are unreasonably large; SH‐wave velocities decrease monotonically as σ increases, but the ratio of horizontal SH‐wave velocity to vertical SH‐wave velocity goes through a minimum of unity.


1998 ◽  
Vol 41 (4) ◽  
Author(s):  
G. Iannaccone ◽  
L. Improta ◽  
P. Capuano ◽  
A. Zollo ◽  
G. Biella ◽  
...  

This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia Platform in the Apulia Foreland.


1982 ◽  
Vol 19 (8) ◽  
pp. 1535-1547 ◽  
Author(s):  
C. Wright

Seismological experiments have been undertaken at a test site near Chalk River, Ontario that consists of crystalline rocks covered by glacial sediments. Near-surface P and S wave velocity and amplitude variations have been measured along profiles less than 2 km in length. The P and S wave velocities were generally in the range 4.5–5.6 and 2.9–3.2 km/s, respectively. These results are consistent with propagation through fractured gneiss and monzonite, which form the bulk of the rock body. The P wave velocity falls below 5.0 km/s in a region where there is a major fault and in an area of high electrical conductivity; such velocity minima are therefore associated with fracture systems. For some paths, the P and 5 wave velocities were in the ranges 6.2–6.6 and 3.7–4.1 km/s, respectively, showing the presence of thin sheets of gabbro. Temporal changes in P travel times of up to 1.4% over a 12 h period were observed where the sediment cover was thickest. The cause may be changes in the water table. The absence of polarized SH arrivals from specially designed shear wave sources indicates the inhomogeneity of the test site. A Q value of 243 ± 53 for P waves was derived over one relatively homogeneous profile of about 600 m length. P wave velocity minima measured between depths of 25 and 250 m in a borehole correlate well with the distribution of fractures inferred from optical examination of borehole cores, laboratory measurements of seismic velocities, and tube wave studies.


Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1245-1246

Okoye et al. develop a least-squares iterative inversion technique determining of the elastic parameters δ* and vertical P-wave velocity (α0) of any transversely isotropic modeling material in the laboratory. The anisotropic inverse modeling technique finds the best fitting solution and implements analytical rather than numerical differentiations to optimize the accuracy of the results.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hasan Arman

AbstractThis study aims to investigate the correlation between the P-wave velocity (Vp) and the mechanical and the physical properties of the limestone; Vp tests were conducted on over 320 limestone samples. Moreover, the effects of the mineralogical, textural, and chemical composition of limestone were also studied through thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The relationships between the Vp and the uniaxial compressive strength (UCS), point load index (PLI(Is(50)), 2nd cycle of slake durability index (Id2), natural unit weight (γn), specific gravity (Gs(c)), water absorption by weight (WA), and porosity (n) were estimated using representative empirical equations. The empirical equations were validated by Student’s t test that has indicated the existence of strong relationships between the mechanical and physical properties of the intact limestone with Vp; the calculated t-values were higher than the t-critical value. Furthermore, the results of previously available studies were compared with the results of this study in terms of the generated equations for Vp values and the slope of a 1:1 line, which was used to appraise the predicted and measured values. This study demonstrates that the UCS, PLI(Is(50)), Id2, γn, Gs(c), WA, and n values of an intact limestone can be predicted by using Vp, which is fast, easy, economical and nondestructive test.


2020 ◽  
Author(s):  
Gaye Bayrakci ◽  
Timothy A. Minshull ◽  
Jonathan M. Bull ◽  
Timothy J. Henstock ◽  
Giuseppe Provenzano ◽  
...  

<p>Scanner pockmark is an active and continuous methane venting seafloor depression of ~ 900 x 450 m wide and 22 m deep. It is located in the northern North Sea, within the Witch Ground basin where the seafloor and shallow sediments are heavily affected by pockmarks and paleo-pockmarks of various sizes. A seismic chimney structure is present below the Scanner pockmark. It is expressed as a near-vertical column of acoustic blanking below a bright zone of gas-bearing sediments. Seismic chimneys are thought to host connected vertical fractures which may be concentric within the chimney and align parallel to maximum compression outside it. The crack geometry modifies the seismic velocities, and hence, the anisotropy measured inside and outside of the chimney is expected to be different.</p><p> </p><p>We carried out anisotropic P-wave tomography with a GI-gun wide-angle dataset recorded by the 25 Ocean Bottom Seismometers (OBSs) of the CHIMNEY experiment (2017). Travel times of more than 60,000 refracted phases propagating within a volume of 4 x 4 x 2 km were inverted for P-wave velocity and the direction and degree of P-wave anisotropy. The grid is centred on the Scanner Pockmark and has a y-axis parallel to -34<sup>o</sup> N. The horizontal node interval is denser in the zone covered by the OBSs and the vertical node interval is denser near the seabed. A 3 iteration inversion leads to a chi<sup>2</sup> misfit value of 1 and a root-mean-square misfit of <10 ms. The results show a maximum P-wave anisotropy of 5%, and higher degrees of anisotropy correlates well with higher velocities. The fast P-wave velocity orientation, a proxy for fracture orientations, is 46<sup>o</sup> N. The top of the chimney possibly links a bright spot mapped at 270 ms in two way travel time using RMS amplitudes of MCS data, to the surface gas emission. The bright spot corresponds to low tomographic P-wave velocity and anisotropy, suggesting that gas is located in a zone with unaligned fractures or porosity. This observation is in good agreement with early multi-channel seismic data interpretations which suggested that the gas is trapped within a sandy clay layer, the Ling Bank Formation, capped by an upper clay layer, the Coal Pit Formation. In the next step, we will invert the travel-times of reflected phases in order to increase the image resolution.  </p>


Sign in / Sign up

Export Citation Format

Share Document