Field development with three‐dimensional seismic methods in the Gulf of Thailand—A case history

Geophysics ◽  
1982 ◽  
Vol 47 (2) ◽  
pp. 149-176 ◽  
Author(s):  
C. G. Dahm ◽  
R. J. Graebner

A three‐dimensional (3-D) marine seismic survey was conducted in the Gulf of Thailand to aid in the development of a gas field indicated by three wildcat wells which had been located by seismic reconnaissance programs shot over a period of several years. The key to successful exploration in the area, basically a hinge line play, was a detailed understanding of the complex faulting controlling the hydrocarbon traps. Since the prospect lies 160–220 km offshore, some specialized surveying techniques were employed to achieve the required positioning accuracy. About 1280 km of seismic data were recorded at 100-m line spacing over a roughly rectangular block covering about [Formula: see text]. The 48‐fold data were processed using a 3-D wave equation migration algorithm yielding a set of seismic traces representing the data vertically below a grid of depth points spaced at [Formula: see text] by 100 m. The results of the 3-D program showed greater fault resolution and structural delineation. The interpretation developed from a series of horizontal slices provided by the 3-D processing further improved fault resolution. Five wells, drilled on the basis of the 3-D survey, are productive and closely tie the seismic data. Initial studies of amplitude patterns of key reflectors, combined with interval velocities from seismic derived logs, appear to offer the potential of direct detection of productive gas zones thicker than 25 to 30 ft. The 3-D seismic data are being utilized for planning additional development wells and potential platform locations.

2020 ◽  
Vol 117 (45) ◽  
pp. 27869-27876
Author(s):  
Martino Foschi ◽  
Joseph A. Cartwright ◽  
Christopher W. MacMinn ◽  
Giuseppe Etiope

Geologic hydrocarbon seepage is considered to be the dominant natural source of atmospheric methane in terrestrial and shallow‐water areas; in deep‐water areas, in contrast, hydrocarbon seepage is expected to have no atmospheric impact because the gas is typically consumed throughout the water column. Here, we present evidence for a sudden expulsion of a reservoir‐size quantity of methane from a deep‐water seep during the Pliocene, resulting from natural reservoir overpressure. Combining three-dimensional seismic data, borehole data and fluid‐flow modeling, we estimate that 18–27 of the 23–31 Tg of methane released at the seafloor could have reached the atmosphere over 39–241 days. This emission is ∼10% and ∼28% of present‐day, annual natural and petroleum‐industry methane emissions, respectively. While no such ultraseepage events have been documented in modern times and their frequency is unknown, seismic data suggest they were not rare in the past and may potentially occur at present in critically pressurized reservoirs. This neglected phenomenon can influence decadal changes in atmospheric methane.


2006 ◽  
Vol 46 (1) ◽  
pp. 101 ◽  
Author(s):  
K.J. Bennett ◽  
M.R. Bussell

The newly acquired 3,590 km2 Demeter 3D high resolution seismic survey covers most of the North West Shelf Venture (NWSV) area; a prolific hydrocarbon province with ultimate recoverable reserves of greater than 30 Tcf gas and 1.5 billion bbls of oil and natural gas liquids. The exploration and development of this area has evolved in parallel with the advent of new technologies, maturing into the present phase of revitalised development and exploration based on the Demeter 3D.The NWSV is entering a period of growing gas market demand and infrastructure expansion, combined with a more diverse and mature supply portfolio of offshore fields. A sequence of satellite fields will require optimised development over the next 5–10 years, with a large number of wells to be drilled.The NWSV area is acknowledged to be a complex seismic environment that, until recently, was imaged by a patchwork of eight vintage (1981–98) 3D seismic surveys, each acquired with different parameters. With most of the clearly defined structural highs drilled, exploration success in recent years has been modest. This is due primarily to severe seismic multiple contamination masking the more subtle and deeper exploration prospects. The poor quality and low resolution of vintage seismic data has also impeded reservoir characterisation and sub-surface modelling. These sub-surface uncertainties, together with the large planned expenditure associated with forthcoming development, justified the need for the Demeter leading edge 3D seismic acquisition and processing techniques to underpin field development planning and reserves evaluations.The objective of the Demeter 3D survey was to re-image the NWSV area with a single acquisition and processing sequence to reduce multiple contamination and improve imaging of intra-reservoir architecture. Single source (133 nominal fold), shallow solid streamer acquisition combined with five stages of demultiple and detailed velocity analysis are considered key components of Demeter.The final Demeter volumes were delivered early 2005 and already some benefits of the higher resolution data have been realised, exemplified in the following:Successful drilling of development wells on the Wanaea, Lambert and Hermes oil fields and identification of further opportunities on Wanaea-Cossack and Lambert- Hermes;Dramatic improvements in seismic data quality observed at the giant Perseus gas field helping define seven development well locations;Considerably improved definition of fluvial channel architecture in the south of the Goodwyn gas field allowing for improved well placement and understanding of reservoir distribution;Identification of new exploration prospects and reevaluation of the existing prospect portfolio. Although the Demeter data set has given significant bandwidth needed for this revitalised phase of exploration and development, there remain areas that still suffer from poor seismic imaging, providing challenges for the future application of new technologies.


2019 ◽  
Vol 56 (5) ◽  
pp. 569-583 ◽  
Author(s):  
Gilles Bellefleur ◽  
Saeid Cheraghi ◽  
Alireza Malehmir

We reprocessed legacy three-dimensional (3D) seismic data from the Halfmile Lake and Brunswick areas, both of which were acquired for mineral exploration in the Bathurst Mining Camp, New Brunswick. Each 3D seismic survey was acquired over known volcanogenic massive sulphide deposits and covered areas with strong mineral potential. Most improvements resulted from a reduction of coherent and random noise on prestack gathers and from an improved velocity model, combined with re-imaging with dip moveout corrections and poststack migration or prestack time migration. At Halfmile Lake, the new imaging results show the Deep zone and a possible extension of the sulphide mineralization at greater depth. True amplitude processing has shown that this anomaly has strong amplitudes and is offset from the Deep zone by a shallowly dipping fault (<15°). With the clearer geological context provided by our results, this anomaly, which appears as a stand-alone anomaly on an original image obtained by Noranda Exploration Ltd., becomes a defendable exploration target. Nonorthogonal acquisition geometry and receiver patches of the Brunswick No. 6 3D seismic survey generated artefacts after dip moveout processing that reduced the overall quality of the seismic volumes. By using a filtering approach based on the application of a weighted Laplacian-Gaussian filter in the Kx–Ky domain, we reduced the noise and improved the continuity of reflections. We also imaged the short and flat reflections observed previously only in the shallow part of prestack time migrated data. These short reflections appear as diffractions on the filtered stacked section with dip moveout corrections, indicating that they originate from small geological bodies or discontinuities in the subsurface.


Sign in / Sign up

Export Citation Format

Share Document