Near‐surface faulting effects on seismic reflection times

Geophysics ◽  
1983 ◽  
Vol 48 (8) ◽  
pp. 1140-1142 ◽  
Author(s):  
W. Honeyman

The depth conversion of seismic reflection records has been the subject of many papers, particularly where faults or other geologic features are present. The common‐depth‐point (CDP) stacked seismic sections with large spread lengths of the order of 2 km have resulted in different interpretation problems. Al‐Chalabi (1979) considered the effect on stacking velocities of subsurface inhomogeneities where different rays in the CDP gather do not penetrate the same type of earth column. He showed that small time delays of 10 msec produce steps in the hyperbolic offset distance‐time curve of the CDP gather and produce stacking velocity variations of the order of ten percent. Levin (1973) considered a time delay in only one ray of the CDP gather and its effect on both stacking velocity and the zero‐offset time [Formula: see text]. This paper models the effect of near‐surface faults on the zero‐offset time [Formula: see text] of deeper layers as determined by the CDP method. This is particularly important since the zero‐offset time is plotted on the processed final record.

Solid Earth ◽  
2016 ◽  
Vol 7 (5) ◽  
pp. 1491-1508 ◽  
Author(s):  
Sonja H. Wadas ◽  
Ulrich Polom ◽  
Charlotte M. Krawczyk

Abstract. Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10–15 m.


Geophysics ◽  
1992 ◽  
Vol 57 (10) ◽  
pp. 1373-1380 ◽  
Author(s):  
Richard D. Miller ◽  
Victor Saenz ◽  
Robert J. Huggins

The common‐depth‐point (CDP) seismic‐reflection method was used to delineate subsurface structure in a 3-m thick, 220-m deep coal zone in the Palau area of Coahuila, Mexico. An extensive series of walkaway‐noise tests was performed to optimize recording parameters and equipment. Reflection events can be interpreted from depths of approximately 100 to 300 m on CDP stacked seismic sections. The seismic data allow accurate identification of the horizontal location of the structure responsible for a drill‐discovered 3-m difference in coal‐zone depth between boreholes 150 m apart. The reflection method can discriminate folding with wavelengths in excess of 20 m and faulting with offset greater than 2 m at this site.


Geophysics ◽  
2020 ◽  
pp. 1-46
Author(s):  
David C. Henley ◽  
Donald C. Lawton

ABSTRACTThe objective of most seismic time-lapse studies is to detect rock property changes in a subsurface formation caused by fluid withdrawal or injection, often by comparing seismic reflection images of the subsurface before and after the operation. Since rock property changes can affect the amplitudes of seismic reflection events associated with the boundaries of the formation, amplitude anomalies are the usual target of time-lapse experiments. Sometimes, however, particularly in harder, less porous rocks, a seismic amplitude anomaly can be relatively small and difficult to detect. There is a secondary time-lapse effect, however, which may be detectable even in the absence of a significant reflectivity anomaly: the time-delay of reflections from layers beneath a formation whose wave propagation velocity has been altered by pore fluid change. We introduce a near-surface correction technique for land data, which we call joint raypath interferometry, to specifically enhance and detect small time delays between corresponding events on two or more comparable time-lapse seismic images. We demonstrate the technique first on a numerical model, then on an actual time-lapse field survey in which a reflection amplitude anomaly is difficult to detect.


1989 ◽  
Author(s):  
D R Parrott ◽  
C F M Lewis ◽  
G V Sonnichsen ◽  
D C Mosher ◽  
M Douma ◽  
...  

Geophysics ◽  
1961 ◽  
Vol 26 (6) ◽  
pp. 754-760 ◽  
Author(s):  
Pierre L. Goupillaud

This paper suggests a scheme for compensating the effects that the near‐surface stratification, variable from spread to spread, produces on both the character and the timing of the seismic traces. For this purpose, accurate near‐surface velocity information is mandatory. This scheme should greatly reduce the correlation difficulties so frequently encountered in many areas. It may also be used to enhance the resolving power of the seismic reflection technique. The approach presented here is based on the rather restrictive assumptions of normal incidence, parallel equispaced plant reflectors, and noiseless conditions.


2008 ◽  
Vol 25 (9) ◽  
pp. 1710-1716 ◽  
Author(s):  
Jiayi Pan ◽  
David A. Jay

Abstract The utility of the acoustic Doppler current profiler (ADCP) for sampling small time and space scales of coastal environments can be enhanced by mounting a high-frequency (1200 kHz) ADCP on an oscillating towed body. This approach requires both an external reference to convert the measured shears to velocities in the earth coordinates and a method to determine the towed body velocities. During the River Influence on the Shelf Ecosystems (RISE) project cruise, a high-frequency (1200 kHz) and narrowbeam ADCP with mode 12 sampling was mounted on a TRIAXUS oscillating towfish, which steers a 3D path behind the ship. This deployment approach extended the vertical range of the ADCP and allowed it to sample near-surface waters outside the ship’s wake. The measurements from a ship-mounted 1200-kHz narrowbeam ADCP are used as references for TRIAXUS ADCP data, and a method of overlapping bins is employed to recover the entire vertical range of the TRIAXUS ADCP. The TRIAXUS vehicle horizontal velocities are obtained by removing the derived ocean current velocity from the TRIAXUS ADCP measurements. The results show that the method is practical.


2021 ◽  
Author(s):  
David Tanner ◽  
Hermann Buness ◽  
Thomas Burschil

<p>Glaciotectonic structures commonly include thrusting and folding, often as multiphase deformation. Here we present the results of a small-scale 3-D P-wave seismic reflection survey of glacial sediments within an overdeepened glacial valley in which we recognise unusual folding structures in front of push-moraine. The study area is in the Tannwald Basin, in southern Germany, about 50 km north of Lake Constance, where the basin is part of the glacial overdeepened Rhine Valley. The basin was excavated out of Tertiary Molasse sediments during the Hosskirchian stage, and infilled by 200 m of Hosskirchian and Rissian glacioclastics (Dietmanns Fm.). After an unconformity in the Rissian, a ca. 7 m-thick till (matrix-supported diamicton) was deposited, followed by up to 30 m of Rissian/Würmian coarse gravels and minor diamictons (Illmensee Fm.). The terminal moraine of the last Würmian glaciation overlies these deposits to the SW, not 200 m away.</p><p>We conducted a 3-D, 120 x 120 m², P-wave seismic reflection survey around a prospective borehole site in the study area. Source/receiver points and lines were spaced at 3 m and 9 m, respectively. A 10 s sweep of 20-200 Hz was excited by a small electrodynamic, wheelbarrow-borne vibrator twice at every of the 1004 realized shot positions. We recognised that the top layer of coarse gravel above the till is folded, but not in the conventional buckling sense, rather as cuspate-lobate folding. The fold axes are parallel to the terminal moraine front. The wavelength of the folding varies between 40 and 80 m, and the thickness of the folded layer is on average about 20 m. Cuspate-lobate folding is typical for deformation of layers of differing mechanical competence (after Ramsay and Huber 1987; µ<sub>1</sub>/µ<sub>2</sub> less than 10), so this tell us something about the relative competence (or stiffness) of the till layer compared to the coarse clastics above. We also detected small thrust faults that are also parallel to the push-moraine, but these have very little offset and most of the deformation was achieved by folding.</p><p>Ramsay, J.G. and Huber, M. I. (1987): The techniques of modern structural geology, vol. 2: Folds and fractures: Academic Press, London, 700 pp.</p>


Sign in / Sign up

Export Citation Format

Share Document