Time-lapse detection using raypath interferometry

Geophysics ◽  
2020 ◽  
pp. 1-46
Author(s):  
David C. Henley ◽  
Donald C. Lawton

ABSTRACTThe objective of most seismic time-lapse studies is to detect rock property changes in a subsurface formation caused by fluid withdrawal or injection, often by comparing seismic reflection images of the subsurface before and after the operation. Since rock property changes can affect the amplitudes of seismic reflection events associated with the boundaries of the formation, amplitude anomalies are the usual target of time-lapse experiments. Sometimes, however, particularly in harder, less porous rocks, a seismic amplitude anomaly can be relatively small and difficult to detect. There is a secondary time-lapse effect, however, which may be detectable even in the absence of a significant reflectivity anomaly: the time-delay of reflections from layers beneath a formation whose wave propagation velocity has been altered by pore fluid change. We introduce a near-surface correction technique for land data, which we call joint raypath interferometry, to specifically enhance and detect small time delays between corresponding events on two or more comparable time-lapse seismic images. We demonstrate the technique first on a numerical model, then on an actual time-lapse field survey in which a reflection amplitude anomaly is difficult to detect.

Geophysics ◽  
1983 ◽  
Vol 48 (8) ◽  
pp. 1140-1142 ◽  
Author(s):  
W. Honeyman

The depth conversion of seismic reflection records has been the subject of many papers, particularly where faults or other geologic features are present. The common‐depth‐point (CDP) stacked seismic sections with large spread lengths of the order of 2 km have resulted in different interpretation problems. Al‐Chalabi (1979) considered the effect on stacking velocities of subsurface inhomogeneities where different rays in the CDP gather do not penetrate the same type of earth column. He showed that small time delays of 10 msec produce steps in the hyperbolic offset distance‐time curve of the CDP gather and produce stacking velocity variations of the order of ten percent. Levin (1973) considered a time delay in only one ray of the CDP gather and its effect on both stacking velocity and the zero‐offset time [Formula: see text]. This paper models the effect of near‐surface faults on the zero‐offset time [Formula: see text] of deeper layers as determined by the CDP method. This is particularly important since the zero‐offset time is plotted on the processed final record.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. P13-P25
Author(s):  
Michael J. Faggetter ◽  
Mark E. Vardy ◽  
Justin K. Dix ◽  
Jonathan M. Bull ◽  
Timothy J. Henstock

Time-lapse (4D) seismic imaging is now widely used as a tool to map and interpret changes in deep reservoirs as well as investigate dynamic, shallow hydrological processes in the near surface. However, there are very few examples of time-lapse analysis using ultra-high-frequency (UHF; kHz range) marine seismic reflection data. Exacting requirements for navigation can be prohibitive for acquiring coherent, true-3D volumes. Variable environmental noise can also lead to poor amplitude repeatability and make it difficult to identify differences that are related to real physical changes. Overcoming these challenges opens up a range of potential applications for monitoring the subsurface at decimetric resolution, including geohazards, geologic structures, as well as the bed-level and subsurface response to anthropogenic activities. Navigation postprocessing was incorporated to improve the acquisition and processing workflow for the 3D Chirp subbottom profiler and provide stable, centimeter-level absolute positioning, resulting in well-matched 3D data and mitigating 4D noise for data stacked into [Formula: see text] common-midpoint bins. Within an example 4D data set acquired on the south coast of the UK, interpretable differences are recorded within a shallow gas blanket. Reflections from the top and bottom of a gas pocket are imaged at low tide, whereas at high tide only the upper reflection is imaged. This case study demonstrates the viability of time-lapse UHF 3D seismic reflection for quantitative mapping of decimeter-scale changes within the shallow marine subsurface.


Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherif M. Hanafy ◽  
Hussein Hoteit ◽  
Jing Li ◽  
Gerard T. Schuster

AbstractResults are presented for real-time seismic imaging of subsurface fluid flow by parsimonious refraction and surface-wave interferometry. Each subsurface velocity image inverted from time-lapse seismic data only requires several minutes of recording time, which is less than the time-scale of the fluid-induced changes in the rock properties. In this sense this is real-time imaging. The images are P-velocity tomograms inverted from the first-arrival times and the S-velocity tomograms inverted from dispersion curves. Compared to conventional seismic imaging, parsimonious interferometry reduces the recording time and increases the temporal resolution of time-lapse seismic images by more than an order-of-magnitude. In our seismic experiment, we recorded 90 sparse data sets over 4.5 h while injecting 12-tons of water into a sand dune. Results show that the percolation of water is mostly along layered boundaries down to a depth of a few meters, which is consistent with our 3D computational fluid flow simulations and laboratory experiments. The significance of parsimonious interferometry is that it provides more than an order-of-magnitude increase of temporal resolution in time-lapse seismic imaging. We believe that real-time seismic imaging will have important applications for non-destructive characterization in environmental, biomedical, and subsurface imaging.


2021 ◽  
Vol 109 ◽  
pp. 103363
Author(s):  
Ben Roche ◽  
Jonathan M. Bull ◽  
Hector Marin-Moreno ◽  
Timothy G. Leighton ◽  
Ismael H. Falcon-Suarez ◽  
...  

2021 ◽  
Author(s):  
Maike Offer ◽  
Riccardo Scandroglio ◽  
Daniel Draebing ◽  
Michael Krautblatter

<p>Warming of permafrost in steep rock walls decreases their mechanical stability and could triggers rockfalls and rockslides. However, the direct link between climate change and permafrost degradation is seldom quantified with precise monitoring techniques and long-term time series. Where boreholes are not possible, laboratory-calibrated Electrical Resistivity Tomography (ERT) is presumably the most accurate quantitative permafrost monitoring technique providing a sensitive record for frozen vs. unfrozen bedrock. Recently, 4D inversions allow also quantification of frozen bedrock extension and of its changes with time (Scandroglio et al., in review).</p><p>In this study we (i) evaluate the influence of the inversion parameters on the volumes and (ii) connect the volumetric changes with measured mechanical consequences.</p><p>The ERT time-serie was recorded between 2006 and 2019 in steep bedrock at the permafrost affected Steintälli Ridge (3100 m asl). Accurately positioned 205 drilled-in steel electrodes in 5 parallel lines across the rock ridge have been repeatedly measured with similar hardware and are compared to laboratory temperature-resistivity (T–ρ) calibration of water-saturated samples from the field. Inversions were conducted using the open-source software BERT for the first time with the aim of estimating permafrost volumetric changes over a decade.</p><p>(i) Here we present a sensitivity analysis of the outcomes by testing various plausible inversion set-ups. Results are computed with different input data filters, data error model, regularization parameter (λ), model roughness reweighting and time-lapse constraints. The model with the largest permafrost degradation was obtained without any time-lapse constraints, whereas constraining each model with the prior measurement results in the smallest degradation. Important changes are also connected to the data error estimation, while other setting seems to have less influence on the frozen volume. All inversions confirmed a drastic permafrost degradation in the last 13 years with an average reduction of 3.900±600 m<sup>3</sup> (60±10% of the starting volume), well in agreement with the measured air temperatures increase.</p><p>(ii) Average bedrock thawing rate of ~300 m<sup>3</sup>/a is expected to significantly influence the stability of the ridge. Resistivity changes are especially evident on the south-west exposed side and in the core of the ridge and are here connected to deformations measured with tape extensometer, in order to precisely estimate the mechanical consequences of bedrock warming.</p><p>In summary, the strong degradation of permafrost in the last decade it’s here confirmed since inversion settings only have minor influence on volume quantification. Internal thermal dynamics need correlation with measured external deformation for a correct interpretation of stability consequences. These results are a fundamental benchmark for evaluating mountain permafrost degradation in relation to climate change and demonstrate the key role of temperature-calibrated 4D ERT.</p><p> </p><p>Reference:</p><p>Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach’, <em>Near Surface Geophysics</em>.</p>


2018 ◽  
Vol 16 (6) ◽  
pp. 613-625 ◽  
Author(s):  
M. Dangeard ◽  
L. Bodet ◽  
S. Pasquet ◽  
J. Thiesson ◽  
R. Guérin ◽  
...  
Keyword(s):  

1989 ◽  
Author(s):  
D R Parrott ◽  
C F M Lewis ◽  
G V Sonnichsen ◽  
D C Mosher ◽  
M Douma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document