Local phase velocity from complex seismic data

Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1503-1511 ◽  
Author(s):  
Tim Ellis Scheuer ◽  
D. W. Oldenburg

We propose a new method that uses the concepts of complex trace analysis for the automatic estimation of local phase velocity. A complex seismic record is obtained from a real seismic record by extending complex trace analysis into higher dimensions. Phase velocity is estimated from the complex data by finding trajectories of constant phase. In two dimensions, phase velocity calculation reduces to a ratio of instantaneous frequency and wavenumber, and thus provides a measure of the dominant plane‐wave component at each point in the seismic record. The algorithm is simple to implement, and computational requirements are small, partly due to a new method for computing instantaneous frequency and wavenumber which greatly simplifies these calculations for 2-D and 3-D complex records. In addition, our approach has the advantage that no a priori velocity input is needed; however, optimum stability is achieved when a limited range of dipping events is considered. Preconditioning the record with an appropriate velocity filter helps reduce the detrimental effects of crossing events, spatial aliasing, and random noise contamination.

Geophysics ◽  
1996 ◽  
Vol 61 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Arthur E. Barnes

The ideas of 1-D complex seismic trace analysis extend readily to two dimensions. Two‐dimensional instantaneous amplitude and phase are scalars, and 2-D instantaneous frequency and bandwidth are vectors perpendicular to local wavefronts, each defined by a magnitude and a dip angle. The two independent measures of instantaneous dip correspond to instantaneous apparent phase velocity and group velocity. Instantaneous phase dips are aliased for steep reflection dips following the same rule that governs the aliasing of 2-D sinusoids in f-k space. Two‐dimensional frequency and bandwidth are appropriate for migrated data, whereas 1-D frequency and bandwidth are appropriate for unmigrated data. The 2-D Hilbert transform and 2-D complex trace attributes can be efficiently computed with little more effort than their 1-D counterparts. In three dimensions, amplitude and phase remain scalars, but frequency and bandwidth are 3-D vectors with magnitude, dip angle, and azimuth.


Geophysics ◽  
1979 ◽  
Vol 44 (6) ◽  
pp. 1041-1063 ◽  
Author(s):  
M. T. Taner ◽  
F. Koehler ◽  
R. E. Sheriff

The conventional seismic trace can be viewed as the real component of a complex trace which can be uniquely calculated under usual conditions. The complex trace permits the unique separation of envelope amplitude and phase information and the calculation of instantaneous frequency. These and other quantities can be displayed in a color‐encoded manner which helps an interpreter see their interrelationship and spatial changes. The significance of color patterns and their geological interpretation is illustrated by examples of seismic data from three areas.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V79-V86 ◽  
Author(s):  
Hakan Karsli ◽  
Derman Dondurur ◽  
Günay Çifçi

Time-dependent amplitude and phase information of stacked seismic data are processed independently using complex trace analysis in order to facilitate interpretation by improving resolution and decreasing random noise. We represent seismic traces using their envelopes and instantaneous phases obtained by the Hilbert transform. The proposed method reduces the amplitudes of the low-frequency components of the envelope, while preserving the phase information. Several tests are performed in order to investigate the behavior of the present method for resolution improvement and noise suppression. Applications on both 1D and 2D synthetic data show that the method is capable of reducing the amplitudes and temporal widths of the side lobes of the input wavelets, and hence, the spectral bandwidth of the input seismic data is enhanced, resulting in an improvement in the signal-to-noise ratio. The bright-spot anomalies observed on the stacked sections become clearer because the output seismic traces have a simplified appearance allowing an easier data interpretation. We recommend applying this simple signal processing for signal enhancement prior to interpretation, especially for single channel and low-fold seismic data.


2014 ◽  
Vol 672-674 ◽  
pp. 1964-1967
Author(s):  
Jun Qiu Wang ◽  
Jun Lin ◽  
Xiang Bo Gong

Vibroseis obtained the seismic record by cross-correlation detection calculation. compared with dynamite source, cross-correlation detection can suppress random noise, but produce more correlation noise. This paper studies Radon transform to remove correlation noise produced by electromagnetic drive vibroseis and impact rammer. From the results of processing field seismic records, we can see that Radon transform can remove correlation noise by vibroseis, the SNR of vibroseis seismic data is effectively improved.


1968 ◽  
pp. 105-113 ◽  
Author(s):  
S. Caticha-Ellis ◽  
Ariel Ramos ◽  
Luis Saravia
Keyword(s):  

2003 ◽  
Vol 12 (2) ◽  
pp. 129-133 ◽  
Author(s):  
Peter Girman ◽  
Jan Kříž ◽  
Jozef Friedmanský ◽  
FrantišEk Saudek

Digital image analysis (DIA) is a new method in assessment of islet amount, which is expected to provide reliable and consistent results. We compared this method with conventional counting of small numbers of rat islets. Islets were isolated from 8 pancreases and counted in 24 samples in duplicate, first routinely by sizing according to estimated diameters under a calibrated reticule and then by processing of islets pictures taken by camera. As presumed, no significant difference was found in absolute numbers of islets per sample between DIA and conventional assessment. Volumes of islets per sample measured by DIA were on average more than 10% higher than amounts evaluated conventionally, which was statistically significant. DIA has been shown to be an important method to remove operator bias and provide consistent results. Evaluation of only two dimensions of three-dimensional objects still represents a certain limitation of this technique. With lowering of computer prices the system could become easily available for islet laboratories.


Geophysics ◽  
1984 ◽  
Vol 49 (4) ◽  
pp. 344-352 ◽  
Author(s):  
James D. Robertson ◽  
Henry H. Nogami

Displays of complex trace attributes can help to define thin beds in seismic sections. If the wavelet in a section is zero phase, low impedance strata whose thicknesses are of the order of half the peak‐to‐peak period of the dominant seismic energy show up as anomalously high‐amplitude zones on instantaneous amplitude sections. These anomalies result from the well‐known amplitude tuning effect which occurs when reflection coefficients of opposite polarity a half period apart are convolved with a seismic wavelet. As the layers thin to a quarter period of the dominant seismic energy, thinning is revealed by an anomalous increase in instantaneous frequency. This behavior results from the less well‐known but equally important phenomenon of frequency tuning by beds which thin laterally. Instantaneous frequency reaches an anomalously high value when bed thickness is about a quarter period and remains high as the bed continues to thin. In this paper, complex trace analysis is applied to a synthetic model of a wedge and to a set of broadband field data acquired to delineate thin lenses of porous sandstone. The two case studies illustrate that sets of attribute displays can be used to verify the presence and dimensions of thin beds when definition of the beds is not obvious on conventional seismic sections.


Sign in / Sign up

Export Citation Format

Share Document