Waveform inversion and digital filter theory

Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 534-536 ◽  
Author(s):  
S. Cardimona

For many years, we have used seismic data processing techniques such as digital filter theory to enhance the signal‐to‐noise (S/N) ratio of the observed data to obtain the best possible image of the subsurface. With our increased knowledge and the increasingly sophisticated computers at our disposal, modern methods of data analysis are tending to be inversions through model fitting, i.e., actually finding the best model of the subsurface which would produce the observed data.

Geophysics ◽  
2020 ◽  
pp. 1-57
Author(s):  
Daniele Colombo ◽  
Ernesto Sandoval ◽  
Diego Rovetta ◽  
Apostolos Kontakis

Land seismic velocity modeling is a difficult task largely related to the description of the near surface complexities. Full waveform inversion is the method of choice for achieving high-resolution velocity mapping but its application to land seismic data faces difficulties related to complex physics, unknown and spatially varying source signatures, and low signal-to-noise ratio in the data. Large parameter variations occur in the near surface at various scales causing severe kinematic and dynamic distortions of the recorded wavefield. Some of the parameters can be incorporated in the inversion model while others, due to sub-resolution dimensions or unmodeled physics, need to be corrected through data preconditioning; a topic not well described for land data full waveform inversion applications. We have developed novel algorithms and workflows for surface-consistent data preconditioning utilizing the transmitted portion of the wavefield, signal-to-noise enhancement by generation of CMP-based virtual super shot gathers, and robust 1.5D Laplace-Fourier full waveform inversion. Our surface-consistent scheme solves residual kinematic corrections and amplitude anomalies via scalar compensation or deconvolution of the near surface response. Signal-to-noise enhancement is obtained through the statistical evaluation of volumetric prestack responses at the CMP position, or virtual super (shot) gathers. These are inverted via a novel 1.5D acoustic Laplace-Fourier full waveform inversion scheme using the Helmholtz wave equation and Hankel domain forward modeling. Inversion is performed with nonlinear conjugate gradients. The method is applied to a complex structure-controlled wadi area exhibiting faults, dissolution, collapse, and subsidence where the high resolution FWI velocity modeling helps clarifying the geological interpretation. The developed algorithms and automated workflows provide an effective solution for massive full waveform inversion of land seismic data that can be embedded in typical near surface velocity analysis procedures.


2015 ◽  
Author(s):  
Baoqing Zhang* ◽  
Huawei Zhou ◽  
Zaiyu Ding ◽  
Ran Li ◽  
Zhaoquan He ◽  
...  

1992 ◽  
Vol 32 (1) ◽  
pp. 276
Author(s):  
T.J. Allen ◽  
P. Whiting

Several recent advances made in 3-D seismic data processing are discussed in this paper.Development of a time-variant FK dip-moveout algorithm allows application of the correct three-dimensional operator. Coupled with a high-dip one-pass 3-D migration algorithm, this provides improved resolution and response at all azimuths. The use of dilation operators extends the capability of the process to include an economical and accurate (within well-defined limits) 3-D depth migration.Accuracy of the migration velocity model may be improved by the use of migration velocity analysis: of the two approaches considered, the data-subsetting technique gives more reliable and interpretable results.Conflicts in recording azimuth and bin dimensions of overlapping 3-D surveys may be resolved by the use of a 3-D interpolation algorithm applied post 3-D stack and which allows the combined surveys to be 3-D migrated as one data set.


Sign in / Sign up

Export Citation Format

Share Document