Joint inversion of surface and three‐component borehole magnetic data

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Yaoguo Li ◽  
Douglas W. Oldenburg

The inversion of magnetic data is inherently nonunique with respect to the distance between the source and observation locations. This manifests itself as an ambiguity in the source depth when surface data are inverted and as an ambiguity in the distance between the source and boreholes if borehole data are inverted. Joint inversion of surface and borehole data can help to reduce this nonuniqueness. To achieve this, we develop an algorithm for inverting data sets that have arbitrary observation locations in boreholes and above the surface. The algorithm depends upon weighting functions that counteract the geometric decay of magnetic kernels with distance from the observer. We apply these weighting functions to the inversion of three‐component magnetic data collected in boreholes and then to the joint inversion of surface and borehole data. Both synthetic and field data sets are used to illustrate the new inversion algorithm. When borehole data are inverted directly, three‐component data are far more useful in constructing good susceptibility models than are single‐component data. However, either can be used effectively in a joint inversion with surface data to produce models that are superior to those obtained by inversion of surface data alone.

2014 ◽  
Vol 644-650 ◽  
pp. 2670-2673
Author(s):  
Jun Wang ◽  
Xiao Hong Meng ◽  
Fang Li ◽  
Jun Jie Zhou

With the continuing growth in influence of near surface geophysics, the research of the subsurface structure is of great significance. Geophysical imaging is one of the efficient computer tools that can be applied. This paper utilize the inversion of potential field data to do the subsurface imaging. Here, gravity data and magnetic data are inverted together with structural coupled inversion algorithm. The subspace (model space) is divided into a set of rectangular cells by an orthogonal 2D mesh and assume a constant property (density and magnetic susceptibility) value within each cell. The inversion matrix equation is solved as an unconstrained optimization problem with conjugate gradient method (CG). This imaging method is applied to synthetic data for typical models of gravity and magnetic anomalies and is tested on field data.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


2020 ◽  
Vol 223 (2) ◽  
pp. 1378-1397
Author(s):  
Rosemary A Renaut ◽  
Jarom D Hogue ◽  
Saeed Vatankhah ◽  
Shuang Liu

SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 144
Author(s):  
Christin Bobe ◽  
Daan Hanssens ◽  
Thomas Hermans ◽  
Ellen Van De Vijver

Often, multiple geophysical measurements are sensitive to the same subsurface parameters. In this case, joint inversions are mostly preferred over two (or more) separate inversions of the geophysical data sets due to the expected reduction of the non-uniqueness in the joint inverse solution. This reduction can be quantified using Bayesian inversions. However, standard Markov chain Monte Carlo (MCMC) approaches are computationally expensive for most geophysical inverse problems. We present the Kalman ensemble generator (KEG) method as an efficient alternative to the standard MCMC inversion approaches. As proof of concept, we provide two synthetic studies of joint inversion of frequency domain electromagnetic (FDEM) and direct current (DC) resistivity data for a parameter model with vertical variation in electrical conductivity. For both studies, joint results show a considerable improvement for the joint framework over the separate inversions. This improvement consists of (1) an uncertainty reduction in the posterior probability density function and (2) an ensemble mean that is closer to the synthetic true electrical conductivities. Finally, we apply the KEG joint inversion to FDEM and DC resistivity field data. Joint field data inversions improve in the same way seen for the synthetic studies.


2020 ◽  
Vol 224 (2) ◽  
pp. 1344-1359
Author(s):  
Zhengwei Xu ◽  
Guangui Zou ◽  
Qianqian Wei ◽  
Junqi Tian ◽  
Hemin Yuan

SUMMARY This paper develops a minimum-support focusing stabilizer to perform a joint inversion of the vertical components of gravity and magnetic data using fuzzy c-means clustering (FCM) with the regularized Newton method in a space of weighted parameters. Not only does this joint inversion technology arrive at the conditionally well-posed traditional potential field inversion, but it also increases the structural correlation between multiple inverted models. The FCM and the focusing stabilizer make it possible to balance the convergence of the data space (D) and the model space (M), guiding multimodal geophysical parameters toward assigned petrophysical values, which makes the results more stable and realistic. Two model studies are presented to illustrate the method, a simple synthetic model with two rectangular bodies in a homogenous background and a realistic model of the Volcanogenic Massive Sulfide (VMS) deposits in northeastern New Brunswick, Canada. These models demonstrate that the new focusing joint inversion algorithm produces better images than traditional methods because the FCM function uses the structural correlation of density contrast and magnetic susceptibility as constraints.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Huan Ma ◽  
Handong Tan ◽  
Yue Guo

Four kinds of array of induced polarization (IP) methods (surface, borehole-surface, surface-borehole, and borehole-borehole) are widely used in resource exploration. However, due to the presence of large amounts of the sources, it will take much time to complete the inversion. In the paper, a new parallel algorithm is described which uses message passing interface (MPI) and graphics processing unit (GPU) to accelerate 3D inversion of these four methods. The forward finite differential equation is solved by ILU0 preconditioner and the conjugate gradient (CG) solver. The inverse problem is solved by nonlinear conjugate gradients (NLCG) iteration which is used to calculate one forward and two “pseudo-forward” modelings and update the direction, space, and model in turn. Because each source is independent in forward and “pseudo-forward” modelings, multiprocess modes are opened by calling MPI library. The iterative matrix solver within CULA is called in each process. Some tables and synthetic data examples illustrate that this parallel inversion algorithm is effective. Furthermore, we demonstrate that the joint inversion of surface and borehole data produces resistivity and chargeability results are superior to those obtained from inversions of individual surface data.


2019 ◽  
Vol 220 (3) ◽  
pp. 1995-2008 ◽  
Author(s):  
C Jordi ◽  
J Doetsch ◽  
T Günther ◽  
C Schmelzbach ◽  
H Maurer ◽  
...  

SUMMARY Structural joint inversion of several data sets on an irregular mesh requires appropriate coupling operators. To date, joint inversion algorithms are primarily designed for the use on regular rectilinear grids and impose structural similarity in the direct neighbourhood of a cell only. We introduce a novel scheme for calculating cross-gradient operators based on a correlation model that allows to define the operator size by imposing physical length scales. We demonstrate that the proposed cross-gradient operators are largely decoupled from the discretization of the modelling domain, which is particularly important for irregular meshes where cell sizes vary. Our structural joint inversion algorithm is applied to a synthetic electrical resistivity tomography and ground penetrating radar 3-D cross-well experiment aiming at imaging two anomalous bodies and extracting the parameter distribution of the geostatistical background models. For both tasks, joint inversion produced superior results compared with individual inversions of the two data sets. Finally, we applied structural joint inversion to two field data sets recorded over a karstified limestone area. By including geological a priori information via the correlation-based operators into the joint inversion, we find P-wave velocity and electrical resistivity tomograms that are in accordance with the expected subsurface geology.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Yaoguo Li ◽  
Douglas W. Oldenburg

We present a method for separating regional and residual magnetic fields using a 3-D magnetic inversion algorithm. The separation is achieved by inverting the observed magnetic data from a large area to construct a regional susceptibility distribution. The magnetic field produced by the regional susceptibility model is then used as the regional field, and the residual data are obtained by simple subtraction. The advantages of this method of separation are that it introduces little distortion to the shape of the extracted anomaly and that it is not affected significantly by factors such as topography and the overlap of power spectra of regional and residual fields. The proposed method is tested using a synthetic example having varying relative positions between the local and regional sources and then using a field data set from Australia. Results show that the residual field extracted using this method enables good recovery of target susceptibility distribution from inversions.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. F203-F214 ◽  
Author(s):  
A. Abubakar ◽  
M. Li ◽  
G. Pan ◽  
J. Liu ◽  
T. M. Habashy

We have developed an inversion algorithm for jointly inverting controlled-source electromagnetic (CSEM) data and magnetotelluric (MT) data. It is well known that CSEM and MT data provide complementary information about the subsurface resistivity distribution; hence, it is useful to derive earth resistivity models that simultaneously and consistently fit both data sets. Because we are dealing with a large-scale computational problem, one usually uses an iterative technique in which a predefined cost function is optimized. One of the issues of this simultaneous joint inversion approach is how to assign the relative weights on the CSEM and MT data in constructing the cost function. We propose a multiplicative cost function instead of the traditional additive one. This function does not require an a priori choice of the relative weights between these two data sets. It will adaptively put CSEM and MT data on equal footing in the inversion process. The inversion is accomplished with a regularized Gauss-Newton minimization scheme where the model parameters are forced to lie within their upper and lower bounds by a nonlinear transformation procedure. We use a line search scheme to enforce a reduction of the cost function at each iteration. We tested our joint inversion approach on synthetic and field data.


Sign in / Sign up

Export Citation Format

Share Document