Focusing aspects of the hyperbolic Radon transform

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 652-655 ◽  
Author(s):  
Samuel H. Bickel

The parabolic approximation does not accurately model residual moveout for long‐offset marine data. Consequently the focusing power of the parabolic Radon transform is degraded. Maeland (1998) analyzes this problem by deriving the envelope of hyperbolic events in the (τ, q) domain. This note extends Maeland’s analysis to the hyperbolic Radon transform (τ, p) domain.

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1806-1815 ◽  
Author(s):  
Evgeny Landa ◽  
Igor Belfer ◽  
Shemer Keydar

The problem of multiple attenuation has been solved only partially. One of the most common methods of attenuating multiples is an approach based on the Radon transform. It is commonly accepted that the parabolic Radon transform method is only able to attenuate multiples with significant moveouts. We propose a new 2-D method for attenuation of both surface‐related and interbed multiples in the parabolic τ-p domain. The method is based on the prediction of a multiple model from the wavefront characteristics of the primary events. Multiple prediction comprises the following steps: 1) For a given multiple code, the angles of emergence and the radii of wavefront curvatures are estimated for primary reflections for each receiver in the common‐shotpoint gather. 2) The intermediate points which compose a specified multiple event are determined for each shot‐receiver pair. 3) Traveltimes of the multiples are calculated. Wavefields within time windows around the predicted traveltime curves may be considered as multiple model traces which we use for multiple attenuation process. Using the predicted multiple traveltimes, we can define the area in the τ-p domain which contains the main energy of the multiple event. Resolution improvement of the parabolic Radon operator can be achieved through a simple multiplication of each sample in the τ-p space by a nonlinear semblance function. In this work, we follow the idea of defining the multiple reject areas automatically by comparing the energy of the multiple model and the original input data in the τ-p space. We illustrate the usefulness of this algorithm for the attenuation of multiples on both synthetic and real data.


2014 ◽  
Author(s):  
Qiaofeng Wu* ◽  
Chang-Chun Lee ◽  
Wei Zhao ◽  
Ping Wang ◽  
Yunfeng Li
Keyword(s):  

2016 ◽  
Vol 12 (3) ◽  
pp. 145
Author(s):  
Subarsyah Subarsyah ◽  
Tumpal Benhard Nainggolan

Interferensi water-bottom multipel terhadap reflektor primer menimbulkan efek bersifat destruktif yang menyebabkan penampang seismik menjadi tidak tepat akibat kehadiran reflektor semu. Teknik demultiple perlu diaplikasikan untuk mengatenuasi multipel. Transformasi parabolic radon merupakan teknik atenuasi multipel dengan metode pemisahan dalam domain radon. Multipel sering teridentifikasi pada penampang seismik. Untuk memperbaiki penampang seismik akan dilakukan dengan metode transformasi parabolic radon. Penerapan metode ini mengakibatkan reflektor multipel melemah dan tereduksi setelah dilakukan muting dalam domain radon terhadap zona multipel. Beberapa reflektor primer juga ikut melemah akibat pemisahan dalam domain radon yang kurang optimal, pemisahan akan optimal membutuhkan distribusi offset yang lebar. Kata kunci: Parabolic radon, multipel, atenuasi Water-bottom mutiple interference often destructively interfere with primary reflection that led to incorrect seismic section due to presence apparent reflector. Demultiple techniques need to be applied to attenuate the multiple. Parabolic Radon transform is demultiple attenuation technique that separate multiple and primary in radon domain. Water-bottom mutiple ussualy appear and easly identified on seismic data, parabolic radon transform applied to improve the seismic section. Application of this method to data showing multiple reflectors weakened and reduced after muting multiple zones in the radon domain. Some of the primary reflector also weakened due to bad separation in radon domain, optimal separation will require a wide distribution of offsets. Keywords: Parabolic radon, multiple, attenuation


2003 ◽  
Author(s):  
G.D. Jones ◽  
P.J. Barton ◽  
S.C. Singh
Keyword(s):  

Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1496-1503 ◽  
Author(s):  
Greg Turner

The tau-p transform is a discretized Radon transform. The choice of discretization parameters is a very important part of performing the transform. Insufficient sampling in the tau direction leads to aliasing problems equivalent to those encountered in any one‐dimensional time series. A simple graphical method illustrates that too coarse sampling in the p direction results in reconstructions containing data duplicated incorrectly at different spatial positions. The spacing of these duplications is dependent on the temporal frequency of the data. Insufficient spatial sampling of the original seismic data causes events to plot at multiple p values in tau-p domain, again dependent on temporal frequency. Therefore, to velocity filter spatially aliased noise efficiently, multiple p values must be filtered. The use of appropriate filters in the p-f domain can substantially improve the noise rejection capabilities of velocity filters on spatially aliased noise while having little effect on desired reflection signals.


Sign in / Sign up

Export Citation Format

Share Document