Multiple attenuation in the parabolic τ-p domain using wavefront characteristics of multiple generating primaries

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1806-1815 ◽  
Author(s):  
Evgeny Landa ◽  
Igor Belfer ◽  
Shemer Keydar

The problem of multiple attenuation has been solved only partially. One of the most common methods of attenuating multiples is an approach based on the Radon transform. It is commonly accepted that the parabolic Radon transform method is only able to attenuate multiples with significant moveouts. We propose a new 2-D method for attenuation of both surface‐related and interbed multiples in the parabolic τ-p domain. The method is based on the prediction of a multiple model from the wavefront characteristics of the primary events. Multiple prediction comprises the following steps: 1) For a given multiple code, the angles of emergence and the radii of wavefront curvatures are estimated for primary reflections for each receiver in the common‐shotpoint gather. 2) The intermediate points which compose a specified multiple event are determined for each shot‐receiver pair. 3) Traveltimes of the multiples are calculated. Wavefields within time windows around the predicted traveltime curves may be considered as multiple model traces which we use for multiple attenuation process. Using the predicted multiple traveltimes, we can define the area in the τ-p domain which contains the main energy of the multiple event. Resolution improvement of the parabolic Radon operator can be achieved through a simple multiplication of each sample in the τ-p space by a nonlinear semblance function. In this work, we follow the idea of defining the multiple reject areas automatically by comparing the energy of the multiple model and the original input data in the τ-p space. We illustrate the usefulness of this algorithm for the attenuation of multiples on both synthetic and real data.

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V317-V328
Author(s):  
Jitao Ma ◽  
Guoyang Xu ◽  
Xiaohong Chen ◽  
Xiaoliu Wang ◽  
Zhenjiang Hao

The parabolic Radon transform is one of the most commonly used multiple attenuation methods in seismic data processing. The 2D Radon transform cannot consider the azimuth effect on seismic data when processing 3D common-depth point gathers; hence, the result of applying this transform is unreliable. Therefore, the 3D Radon transform should be applied. The theory of the 3D Radon transform is first introduced. To address sparse sampling in the crossline direction, a lower frequency constraint is introduced to reduce spatial aliasing and improve the resolution of the Radon transform. An orthogonal polynomial transform, which can fit the amplitude variations in different parabolic directions, is combined with the dealiased 3D high-resolution Radon transform to account for the amplitude variations with offset of seismic data. A multiple model can be estimated with superior accuracy, and improved results can be achieved. Synthetic and real data examples indicate that even though our method comes at a higher computational cost than existing techniques, the developed approach provides better attenuation of multiples for 3D seismic data with amplitude variations.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. V33-V39 ◽  
Author(s):  
Yanghua Wang

Wave-equation-based multiple attenuation seismic methods may be divided into the two distinct phases of multiple modeling and multiple subtraction. These two are interrelated and must be optimized in order to produce an optimal final result. The multiple prediction through inversion (MPI) scheme updates the multiple model iteratively, as we usually do in a linearized inverse problem. The scheme models the multiple wavefield without an explicit knowledge of surface and subsurface structures or of the source signature; both are generally unknown in seismic surveys. However, compared to a conventional surface-related multiple attenuation method, the accuracy of the multiple model is improved both kinematically and dynamically. It is because the MPI scheme implicitly takes account of the spatial variation of the surface reflectivity, the source signature, the detector patterns and receiver ghosts, and other effects included in the so-called surface operator. When the MPI scheme is used in the first phase it also significantly reduces the nonlinearity of the problem in the second phase that involves attenuating multiples without removing or altering primaries. The effectiveness of the MPI scheme is demonstrated by examples involving real marine seismic data.


2016 ◽  
Vol 12 (3) ◽  
pp. 145
Author(s):  
Subarsyah Subarsyah ◽  
Tumpal Benhard Nainggolan

Interferensi water-bottom multipel terhadap reflektor primer menimbulkan efek bersifat destruktif yang menyebabkan penampang seismik menjadi tidak tepat akibat kehadiran reflektor semu. Teknik demultiple perlu diaplikasikan untuk mengatenuasi multipel. Transformasi parabolic radon merupakan teknik atenuasi multipel dengan metode pemisahan dalam domain radon. Multipel sering teridentifikasi pada penampang seismik. Untuk memperbaiki penampang seismik akan dilakukan dengan metode transformasi parabolic radon. Penerapan metode ini mengakibatkan reflektor multipel melemah dan tereduksi setelah dilakukan muting dalam domain radon terhadap zona multipel. Beberapa reflektor primer juga ikut melemah akibat pemisahan dalam domain radon yang kurang optimal, pemisahan akan optimal membutuhkan distribusi offset yang lebar. Kata kunci: Parabolic radon, multipel, atenuasi Water-bottom mutiple interference often destructively interfere with primary reflection that led to incorrect seismic section due to presence apparent reflector. Demultiple techniques need to be applied to attenuate the multiple. Parabolic Radon transform is demultiple attenuation technique that separate multiple and primary in radon domain. Water-bottom mutiple ussualy appear and easly identified on seismic data, parabolic radon transform applied to improve the seismic section. Application of this method to data showing multiple reflectors weakened and reduced after muting multiple zones in the radon domain. Some of the primary reflector also weakened due to bad separation in radon domain, optimal separation will require a wide distribution of offsets. Keywords: Parabolic radon, multiple, attenuation


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. V97-V107 ◽  
Author(s):  
Antoine Guitton

Primaries (signal) and multiples (noise) often exhibit different kinematics and amplitudes (i.e., patterns) in time and space. Multidimensional prediction-error filters (PEFs) approximate these patterns to separate noise and signal in a least-squares sense. These filters are time-space variant to handle the nonstationarity of multioffset seismic data. PEFs for the primaries and multiples are estimated from pattern models. In an ideal case where accurate pattern models of both noise and signal exist, the pattern-based method recovers the primaries while preserving their amplitudes. In the more general case, the pattern model of the multiples is obtained by using the data as prediction operators. The pattern model of the primaries is obtained by convolving the noise PEFs with the input data. In this situation, 3D PEFs are preferred to separate (in prestack data) the multiples properly and to preserve the primaries. Comparisons of the proposed method with adaptive subtraction with an [Formula: see text] norm demonstrate that for a given multiple model, the pattern-based approach generally attenuates the multiples and recovers the primaries better. In addition, tests on a 2D line from the Gulf of Mexico demonstrate that the proposed technique copes fairly well with modeling inadequacies present in the multiple prediction.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 652-655 ◽  
Author(s):  
Samuel H. Bickel

The parabolic approximation does not accurately model residual moveout for long‐offset marine data. Consequently the focusing power of the parabolic Radon transform is degraded. Maeland (1998) analyzes this problem by deriving the envelope of hyperbolic events in the (τ, q) domain. This note extends Maeland’s analysis to the hyperbolic Radon transform (τ, p) domain.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 547-553 ◽  
Author(s):  
Yanghua Wang

This paper introduces a fully data‐driven concept, multiple prediction through inversion (MPI), for surface‐related multiple attenuation (SMA). It builds the multiple model not by spatial convolution, as in a conventional SMA, but by updating the attenuated multiple wavefield in the previous iteration to generate a multiple prediction for the new iteration, as is usually the case in an iterative inverse problem. Because MPI does not use spatial convolution, it is able to minimize the edge effect that appears in conventional SMA multiple prediction and to eliminate the need to synthesize near‐offset traces, required by a conventional scheme, so that it can deal with a seismic data set with missing near‐offset traces. The MPI concept also eliminates the need for an explicit surface operator, which is required by conventional SMA and is comprised of the inverse source signature and other effects. This method accounts implicitly for the spatial variation of the surface operator in multiple‐model building and attempts to predict multiples which are not only accurate kinematically but are also accurate in phase and amplitude.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA57-WCA63 ◽  
Author(s):  
Mathias Alerini ◽  
Bärbel Traub ◽  
Céline Ravaut ◽  
Eric Duveneck

Ocean-bottom node acquisitions provide high-quality data but usually have large distances between the nodes because of cost. This makes the use of conventional processing difficult and has led to relatively little interest in such data for industrial purposes. We have considered a three-step workflow specifically designed for prestack depth imaging of P-waves recorded by ocean-bottom nodes. It consists of multiple attenuation, velocity model estimation, and prestack depth migration. Whereas multiple attenuation and tomography use data in the common-receiver domain, migration is performed in the common-angle domain. One of the main features is the handling of the sparse receiver geometry during velocity model estimation: the reciprocity of the PP-Green’s functions is used to obtain the required tomographic input using only the common-receiver gathers. The tomographic method also provides an estimate of the geologic dip, which is used to limit the migration operator. This provides migrated images free of migration smiles. The workflow contains no additional assumptions compared to those used to process ocean-bottom cable data. We validate the workflow on a 2D line extracted from a 3D real data set acquired in the North Sea. The results show that it is possible to use ocean-bottom data efficiently for prestack depth imaging.


2009 ◽  
Author(s):  
B. Ursin* ◽  
B. Abbad ◽  
M. J. Porsani

Sign in / Sign up

Export Citation Format

Share Document