Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments

Author(s):  
G. Dal Moro ◽  
M. Pipan ◽  
E. Forte ◽  
I. Finetti
Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 782-790 ◽  
Author(s):  
Kristen S. Beaty ◽  
Douglas R. Schmitt

Rayleigh‐wave dispersion is used to study the near‐surface elastic properties of a thick, lacustrine clay to approximately 10 m depth. Ten repeated sets of Rayleigh dispersion curves were obtained through late spring to early fall. A variety of methodologies were used to extract the dispersion curves, but a modified frequency–ray parameter (f − p) method most successfully yields dispersion curves for the first three Rayleigh modes. The Rayleigh‐wave velocities varied from 100 to ∼350 m/s with frequency over the band from 75 to 10 Hz. Over this band, these velocities did not measurably vary during the study period. The observed phase velocity curves were inverted with P‐wave and density values obtained from shallow coring to obtain the shear‐wave velocity structure at the site down to > 14 m. This case study highlights the robust, repeatable, nature of surface wave dispersion methods when care is taken in the acquisition of field data.


2020 ◽  
Author(s):  
Luca D'Auria ◽  
Marina Alfaro Rodríguez ◽  
Daniel Bermejo López ◽  
Jemma Crowther ◽  
Lucy Kennett ◽  
...  

<p>Microtremor measurements represent a useful tool to study the seismic amplification in urban areas. One of the methods that permits characterizing seismic properties of soils is the H/V spectral ratio. This technique is especially useful when dealing with shallow low velocity layers, allowing an effective determination of its velocity and thickness. The H/V technique is very convenient to realize microzonation surveys because of its simplicity and low cost. However, it is recommended to combine it with other geophysical methods and geological information to better constrain the resulting models. In recent years the use of ambient noise cross-correlation has been widely used to retrieve Rayleigh wave dispersion curves between pairs of stations. These curves carry an important information about the subsoil velocity structure and have been already exploited for seismic microzonation purposes.</p><p>The aforementioned methods, H/V spectra and Rayleigh wave dispersion curves, in principle allow obtaining 1D body wave and density profiles. However, one of the most important problems when inverting H/V and dispersion curves, is the poor constraint on density and P wave velocities. This difficulty can be partially solved by imposing some constraints over the inverse problem (e.g. fixing the Vp/Vs ratio) or by devising inverse methods allowing the different parameters to be determined in different steps.</p><p>We propose a novel approach which consists of a joint inversion of H/V spectra and Rayleigh wave dispersion curves, realized simultaneously for all the elements of the mini-array. This allows increasing the ratio between the number of available data and the number of parameters to invert, improving the stability of the inverse problem and reducing the uncertainties on the estimated parameters. For the evaluation of the retrieved model, we used the trans-dimensional Monte Carlo exploration which has shown to be very efficient in evaluating the quality of the resulting model, through an intensive exploration of the “a posteriori” probability density function over the model parameter space.</p><p>We show the improvement in the obtained results on synthetic tests as well as on actual data. In particular we apply this method, named method <strong>MARISMA</strong> (<strong>M</strong>ini <strong>AR</strong>rays for se<strong>IS</strong>mic <strong>M</strong>icrozon<strong>A</strong>tion) on a dataset recorded in the town of San Cristóbal de La Laguna (Tenerife, Canary Islands, Spain) during the summer of 2019.</p>


2019 ◽  
Vol 218 (1) ◽  
pp. 547-559 ◽  
Author(s):  
Yuhang Lei ◽  
Hongyan Shen ◽  
Xinxin Li ◽  
Xin Wang ◽  
Qingchun Li

2015 ◽  
Vol 771 ◽  
pp. 179-182 ◽  
Author(s):  
Yekti Widyaningrum ◽  
Sungkono ◽  
Alwi Husein ◽  
Bagus Jaya Santosa ◽  
Ayi S. Bahri

Rayleigh wave dispersion is intensively used to determine near surface of shear wave velocity (Vs). The method has been known as non-invasive techniques which is costly effective and efficient to characterize subsurface. Acquisition of the Rayleigh wave can be approached in two ways, i.e. passive and active. Passive seismic is accurate to estimate dispersion curve in low frequency, although it is not accurate for high frequency. While active seismic is vice versa of passive seismic. The high frequency of Rayleigh wave dispersion reflects to near surface and vice versa. Therefore, we used the combination of both passive and active seismic method to overcome the limitations of each method. The Vs which is resulted by inversion of the combining data gives accurate model if compared to log and standard penetration test (N-SPT) data. Further, the approach has been used to characterize LUSI (Lumpur Sidoarjo) embankments. The result shows that embankment material (0-12 m) has higher Vs than that lower embankment material.


Sign in / Sign up

Export Citation Format

Share Document